Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Genome Res ; 34(3): 441-453, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38604731

ABSTRACT

Aneuploidy is widely observed in both unicellular and multicellular eukaryotes, usually associated with adaptation to stress conditions. Chromosomal duplication stability is a tradeoff between the fitness cost of having unbalanced gene copies and the potential fitness gained from increased dosage of specific advantageous genes. Trypanosomatids, a family of protozoans that include species that cause neglected tropical diseases, are a relevant group to study aneuploidies. Their life cycle has several stressors that could select for different patterns of chromosomal duplications and/or losses, and their nearly universal use of polycistronic transcription increases their reliance on gene expansion/contraction, as well as post-transcriptional control as mechanisms for gene expression regulation. By evaluating the data from 866 isolates covering seven trypanosomatid genera, we have revealed that aneuploidy tolerance is an ancestral characteristic of trypanosomatids but has a reduced occurrence in a specific monophyletic clade that has undergone large genomic reorganization and chromosomal fusions. We have also identified an ancient chromosomal duplication that was maintained across these parasite's speciation, named collectively as the trypanosomatid ancestral supernumerary chromosome (TASC). TASC has most genes in the same coding strand, is expressed as a disomic chromosome (even having four copies), and has increased potential for functional variation, but it purges highly deleterious mutations more efficiently than other chromosomes. The evidence of stringent control over gene expression in this chromosome suggests that these parasites have adapted to mitigate the fitness cost associated with this ancient chromosomal duplication.


Subject(s)
Aneuploidy , Chromosome Duplication , Gene Expression Regulation , Genome, Protozoan , Evolution, Molecular , Trypanosomatina/genetics , Phylogeny
2.
Proc Natl Acad Sci U S A ; 120(48): e2309306120, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-37988471

ABSTRACT

RNA-DNA hybrids are epigenetic features of all genomes that intersect with many processes, including transcription, telomere homeostasis, and centromere function. Increasing evidence suggests that RNA-DNA hybrids can provide two conflicting roles in the maintenance and transmission of genomes: They can be the triggers of DNA damage, leading to genome change, or can aid the DNA repair processes needed to respond to DNA lesions. Evasion of host immunity by African trypanosomes, such as Trypanosoma brucei, relies on targeted recombination of silent Variant Surface Glycoprotein (VSG) genes into a specialized telomeric locus that directs transcription of just one VSG from thousands. How such VSG recombination is targeted and initiated is unclear. Here, we show that a key enzyme of T. brucei homologous recombination, RAD51, interacts with RNA-DNA hybrids. In addition, we show that RNA-DNA hybrids display a genome-wide colocalization with DNA breaks and that this relationship is impaired by mutation of RAD51. Finally, we show that RAD51 acts to repair highly abundant, localised DNA breaks at the single transcribed VSG and that mutation of RAD51 alters RNA-DNA hybrid abundance at 70 bp repeats both around the transcribed VSG and across the silent VSG archive. This work reveals a widespread, generalised role for RNA-DNA hybrids in directing RAD51 activity during recombination and uncovers a specialised application of this interplay during targeted DNA break repair needed for the critical T. brucei immune evasion reaction of antigenic variation.


Subject(s)
Trypanosoma brucei brucei , R-Loop Structures , Antigenic Variation/genetics , DNA Breaks , DNA , RNA , Variant Surface Glycoproteins, Trypanosoma/genetics
3.
Exp Parasitol ; 255: 108639, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37918502

ABSTRACT

The subcellular localisation of Rad1, a subunit of the Leishmania major 9-1-1 complex, remains unexplored. Herein, we reveal that Rad1 localises predominantly to the nucleus. Upon hydroxyurea treatment, the diffuse nuclear localisation of Rad1 becomes more punctate, suggesting that Rad1 is responsive to replication stress. Moreover, Rad1 localisation correlates with cell cycle progression. In the majority of G1 to early S-phase cells, Rad1 localises predominantly to the nucleus. As cells progress from late-S phase to mitosis, Rad1 relocalizes to both the nucleus and the cytoplasm in ∼90 % of cells. This pattern of distribution is different from Rad9 and Hus1, which remain nuclear throughout the cell cycle, suggesting Leishmania Rad1 may regulate 9-1-1 activities and/or perform relevant functions outside the 9-1-1 complex.


Subject(s)
Cell Cycle Proteins , Leishmania major , Cell Cycle Proteins/genetics , Leishmania major/metabolism , Cell Cycle , DNA Damage
5.
Exp Parasitol, v. 255, 108639, dez. 2023
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-5158

ABSTRACT

The subcellular localisation of Rad1, a subunit of the Leishmania major 9-1-1 complex, remains unexplored. Herein, we reveal that Rad1 localises predominantly to the nucleus. Upon hydroxyurea treatment, the diffuse nuclear localisation of Rad1 becomes more punctate, suggesting that Rad1 is responsive to replication stress. Moreover, Rad1 localisation correlates with cell cycle progression. In the majority of G1 to early S-phase cells, Rad1 localises predominantly to the nucleus. As cells progress from late-S phase to mitosis, Rad1 relocalizes to both the nucleus and the cytoplasm in ∼90 % of cells. This pattern of distribution is different from Rad9 and Hus1, which remain nuclear throughout the cell cycle, suggesting Leishmania Rad1 may regulate 9-1-1 activities and/or perform relevant functions outside the 9-1-1 complex.

6.
Front Cell Infect Microbiol ; 11: 802613, 2021.
Article in English | MEDLINE | ID: mdl-35059327

ABSTRACT

Leishmania parasites are the causative agents of a group of neglected tropical diseases known as leishmaniasis. The molecular mechanisms employed by these parasites to adapt to the adverse conditions found in their hosts are not yet completely understood. DNA repair pathways can be used by Leishmania to enable survival in the interior of macrophages, where the parasite is constantly exposed to oxygen reactive species. In higher eukaryotes, DNA repair pathways are coordinated by the central protein kinases ataxia telangiectasia mutated (ATM) and ataxia telangiectasia and Rad3 related (ATR). The enzyme Exonuclease-1 (EXO1) plays important roles in DNA replication, repair, and recombination, and it can be regulated by ATM- and ATR-mediated signaling pathways. In this study, the DNA damage response pathways in promastigote forms of L. major were investigated using bioinformatics tools, exposure of lineages to oxidizing agents and radiation damage, treatment of cells with ATM and ATR inhibitors, and flow cytometry analysis. We demonstrated high structural and important residue conservation for the catalytic activity of the putative LmjEXO1. The overexpression of putative LmjEXO1 made L. major cells more susceptible to genotoxic damage, most likely due to the nuclease activity of this enzyme and the occurrence of hyper-resection of DNA strands. These cells could be rescued by the addition of caffeine or a selective ATM inhibitor. In contrast, ATR-specific inhibition made the control cells more susceptible to oxidative damage in an LmjEXO1 overexpression-like manner. We demonstrated that ATR-specific inhibition results in the formation of extended single-stranded DNA, most likely due to EXO1 nucleasic activity. Antagonistically, ATM inhibition prevented single-strand DNA formation, which could explain the survival phenotype of lineages overexpressing LmjEXO1. These results suggest that an ATM homolog in Leishmania could act to promote end resection by putative LmjEXO1, and an ATR homologue could prevent hyper-resection, ensuring adequate repair of the parasite DNA.


Subject(s)
Ataxia Telangiectasia Mutated Proteins/antagonists & inhibitors , DNA, Single-Stranded , Leishmania major , DNA, Protozoan , Humans , Leishmania major/drug effects , Leishmania major/genetics , Oxidative Stress , Phosphorylation
7.
Trends Genet ; 37(1): 21-34, 2021 01.
Article in English | MEDLINE | ID: mdl-32993968

ABSTRACT

The genomes of all organisms are read throughout their growth and development, generating new copies during cell division and encoding the cellular activities dictated by the genome's content. However, genomes are not invariant information stores but are purposefully altered in minor and major ways, adapting cellular behaviour and driving evolution. Kinetoplastids are eukaryotic microbes that display a wide range of such read-write genome activities, in many cases affecting critical aspects of their biology, such as host adaptation. Here we discuss the range of read-write genome changes found in two well-studied kinetoplastid parasites, Trypanosoma brucei and Leishmania, focusing on recent work that suggests such adaptive genome variation is linked to novel strategies the parasites use to replicate their unconventional genomes.


Subject(s)
DNA Replication , DNA, Kinetoplast/genetics , Genome, Protozoan , Kinetoplastida/genetics , Leishmania/genetics , Trypanosoma brucei brucei/genetics , Animals
8.
Elife ; 92020 09 08.
Article in English | MEDLINE | ID: mdl-32897188

ABSTRACT

DNA replication is needed to duplicate a cell's genome in S phase and segregate it during cell division. Previous work in Leishmania detected DNA replication initiation at just a single region in each chromosome, an organisation predicted to be insufficient for complete genome duplication within S phase. Here, we show that acetylated histone H3 (AcH3), base J and a kinetochore factor co-localise in each chromosome at only a single locus, which corresponds with previously mapped DNA replication initiation regions and is demarcated by localised G/T skew and G4 patterns. In addition, we describe previously undetected subtelomeric DNA replication in G2/M and G1-phase-enriched cells. Finally, we show that subtelomeric DNA replication, unlike chromosome-internal DNA replication, is sensitive to hydroxyurea and dependent on 9-1-1 activity. These findings indicate that Leishmania's genome duplication programme employs subtelomeric DNA replication initiation, possibly extending beyond S phase, to support predominantly chromosome-internal DNA replication initiation within S phase.


Subject(s)
Chromosome Structures , DNA Replication/genetics , Gene Duplication/genetics , Genome, Protozoan/genetics , Leishmania major/genetics , Chromosome Structures/chemistry , Chromosome Structures/genetics , Chromosome Structures/metabolism , Chromosomes/chemistry , Chromosomes/genetics , Histones/genetics , Histones/metabolism , S Phase/genetics
9.
PLoS Genet ; 16(7): e1008828, 2020 07.
Article in English | MEDLINE | ID: mdl-32609721

ABSTRACT

Homologous recombination (HR) has an intimate relationship with genome replication, both during repair of DNA lesions that might prevent DNA synthesis and in tackling stalls to the replication fork. Recent studies led us to ask if HR might have a more central role in replicating the genome of Leishmania, a eukaryotic parasite. Conflicting evidence has emerged regarding whether or not HR genes are essential, and genome-wide mapping has provided evidence for an unorthodox organisation of DNA replication initiation sites, termed origins. To answer this question, we have employed a combined CRISPR/Cas9 and DiCre approach to rapidly generate and assess the effect of conditional ablation of RAD51 and three RAD51-related proteins in Leishmania major. Using this approach, we demonstrate that loss of any of these HR factors is not immediately lethal but in each case growth slows with time and leads to DNA damage and accumulation of cells with aberrant DNA content. Despite these similarities, we show that only loss of RAD51 or RAD51-3 impairs DNA synthesis and causes elevated levels of genome-wide mutation. Furthermore, we show that these two HR factors act in distinct ways, since ablation of RAD51, but not RAD51-3, has a profound effect on DNA replication, causing loss of initiation at the major origins and increased DNA synthesis at subtelomeres. Our work clarifies questions regarding the importance of HR to survival of Leishmania and reveals an unanticipated, central role for RAD51 in the programme of genome replication in a microbial eukaryote.


Subject(s)
Homologous Recombination/genetics , Leishmania major/genetics , Leishmaniasis, Cutaneous/genetics , Rad51 Recombinase/genetics , CRISPR-Cas Systems/genetics , DNA Damage/genetics , DNA Repair/genetics , DNA Replication/genetics , Gene Knockout Techniques , Genome/genetics , Humans , Leishmania major/pathogenicity , Leishmaniasis, Cutaneous/parasitology
10.
BMC Genomics ; 21(1): 414, 2020 Jun 22.
Article in English | MEDLINE | ID: mdl-32571205

ABSTRACT

BACKGROUND: DNA replication in trypanosomatids operates in a uniquely challenging environment, since most of their genomes are constitutively transcribed. Trypanosoma cruzi, the etiological agent of Chagas disease, presents high variability in both chromosomes size and copy number among strains, though the underlying mechanisms are unknown. RESULTS: Here we have mapped sites of DNA replication initiation across the T. cruzi genome using Marker Frequency Analysis, which has previously only been deployed in two related trypanosomatids. The putative origins identified in T. cruzi show a notable enrichment of GC content, a preferential position at subtelomeric regions, coinciding with genes transcribed towards the telomeres, and a pronounced enrichment within coding DNA sequences, most notably in genes from the Dispersed Gene Family 1 (DGF-1). CONCLUSIONS: These findings suggest a scenario where collisions between DNA replication and transcription are frequent, leading to increased genetic variability, as seen by the increase SNP levels at chromosome subtelomeres and in DGF-1 genes containing putative origins.


Subject(s)
Polymorphism, Single Nucleotide , Replication Origin , Trypanosoma cruzi/genetics , Whole Genome Sequencing/methods , Animals , Base Composition , DNA Replication , DNA, Protozoan/genetics , High-Throughput Nucleotide Sequencing , Triatoma/parasitology , Trypanosoma cruzi/isolation & purification
11.
Methods Mol Biol ; 2116: 225-262, 2020.
Article in English | MEDLINE | ID: mdl-32221924

ABSTRACT

Understanding the rate and patterns of genome variation is becoming ever more amenable to whole-genome analysis through advances in DNA sequencing, which may, at least in some circumstances, have supplanted more localized analyses by cellular and genetic approaches. Whole-genome analyses can utilize both short- and long-read sequence technologies. Here we describe how sequence generated by these approaches has been used in trypanosomatids to examine DNA replication dynamics, the accumulation of modified histone H2A due to genome damage, and evaluation of genome variation, focusing on ploidy change.


Subject(s)
Genome, Protozoan/genetics , Genomic Instability , High-Throughput Nucleotide Sequencing , Leishmania major/genetics , Sequence Analysis, DNA , Chromosomes/genetics , Computational Biology/methods , DNA Copy Number Variations , DNA, Protozoan/genetics , Datasets as Topic , Histones/genetics , Parasitology/methods
12.
BMC Genomics ; 21: 414, 2020.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib17748

ABSTRACT

Background DNA replication in trypanosomatids operates in a uniquely challenging environment, since most of their genomes are constitutively transcribed. Trypanosoma cruzi, the etiological agent of Chagas disease, presents high variability in both chromosomes size and copy number among strains, though the underlying mechanisms are unknown. Results Here we have mapped sites of DNA replication initiation across the T. cruzi genome using Marker Frequency Analysis, which has previously only been deployed in two related trypanosomatids. The putative origins identified in T. cruzi show a notable enrichment of GC content, a preferential position at subtelomeric regions, coinciding with genes transcribed towards the telomeres, and a pronounced enrichment within coding DNA sequences, most notably in genes from the Dispersed Gene Family 1 (DGF-1). Conclusions These findings suggest a scenario where collisions between DNA replication and transcription are frequent, leading to increased genetic variability, as seen by the increase SNP levels at chromosome subtelomeres and in DGF-1 genes containing putative origins.

13.
BMC Genomics, v. 21, 414, jun. 2020
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3076

ABSTRACT

Background DNA replication in trypanosomatids operates in a uniquely challenging environment, since most of their genomes are constitutively transcribed. Trypanosoma cruzi, the etiological agent of Chagas disease, presents high variability in both chromosomes size and copy number among strains, though the underlying mechanisms are unknown. Results Here we have mapped sites of DNA replication initiation across the T. cruzi genome using Marker Frequency Analysis, which has previously only been deployed in two related trypanosomatids. The putative origins identified in T. cruzi show a notable enrichment of GC content, a preferential position at subtelomeric regions, coinciding with genes transcribed towards the telomeres, and a pronounced enrichment within coding DNA sequences, most notably in genes from the Dispersed Gene Family 1 (DGF-1). Conclusions These findings suggest a scenario where collisions between DNA replication and transcription are frequent, leading to increased genetic variability, as seen by the increase SNP levels at chromosome subtelomeres and in DGF-1 genes containing putative origins.

14.
Methods Mol Biol ; 1971: 225-235, 2019.
Article in English | MEDLINE | ID: mdl-30980306

ABSTRACT

Induction of gene expression is a valuable approach for functional studies since it allows for the assessment of phenotypes without the need for clonal selection. Inducible expression can find a wide range of applications, from the study of essential genes to the characterization of overexpression of genes of interest. Here, we describe a detailed protocol for the use of the DiCre-based inducible gene expression system in Leishmania parasites. This is a tightly regulated induction system that allows for time- and dose-controlled expression of gene products, as rapidly as within 12 h.


Subject(s)
Gene Deletion , Genes, Protozoan , Integrases , Leishmania/genetics , Recombination, Genetic
15.
Nucleic Acids Res ; 46(22): 11835-11846, 2018 12 14.
Article in English | MEDLINE | ID: mdl-30380080

ABSTRACT

Leishmania species are protozoan parasites whose remarkably plastic genome limits the establishment of effective genetic manipulation and leishmaniasis treatment. The strategies used by Leishmania to maintain its genome while allowing variability are not fully understood. Here, we used DiCre-mediated conditional gene deletion to show that HUS1, a component of the 9-1-1 (RAD9-RAD1-HUS1) complex, is essential and is required for a G2/M checkpoint. By analyzing genome-wide instability in HUS1 ablated cells, HUS1 is shown to have a conserved role, by which it preserves genome stability and also a divergent role, by which it promotes genome variability. These roles of HUS1 are related to distinct patterns of formation and resolution of single-stranded DNA and γH2A, throughout the cell cycle. Our findings suggest that Leishmania 9-1-1 subunits have evolved to co-opt canonical genomic maintenance and genomic variation functions. Hence, this study reveals a pivotal function of HUS1 in balancing genome stability and transmission in Leishmania. These findings may be relevant to understanding the evolution of genome maintenance and plasticity in other pathogens and eukaryotes.


Subject(s)
Cell Cycle Proteins/genetics , DNA Repair Enzymes/genetics , Endonucleases/genetics , Genome, Protozoan , Leishmania major/genetics , Cell Cycle Proteins/deficiency , Cell Cycle Proteins/metabolism , Computational Biology/methods , Culture Media/chemistry , DNA Repair Enzymes/metabolism , DNA, Single-Stranded/genetics , DNA, Single-Stranded/metabolism , Endonucleases/metabolism , G2 Phase Cell Cycle Checkpoints/genetics , Gene Deletion , Gene Expression Regulation , Genetic Engineering , Genetic Variation , Genomic Instability , Histones/genetics , Histones/metabolism , Leishmania major/metabolism , Whole Genome Sequencing
16.
EBioMedicine ; 36: 83-91, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30268832

ABSTRACT

BACKGROUND: Miltefosine has been used successfully to treat visceral leishmaniasis (VL) in India, but it was unsuccessful for VL in a clinical trial in Brazil. METHODS: To identify molecular markers that predict VL treatment failure whole genome sequencing of 26 L. infantum isolates, from cured and relapsed patients allowed a GWAS analysis of SNPs, gene and chromosome copy number variations. FINDINGS: A strong association was identified (p = 0·0005) between the presence of a genetically stable L. infantumMiltefosine Sensitivity Locus (MSL), and a positive response to miltefosine treatment. The risk of treatment failure increased 9·4-fold (95% CI 2·11-53·54) when an isolate did not have the MSL. The complete absence of the MSL predicted miltefosine failure with 0·92 (95% CI 0·65-0·996) sensitivity and 0·78 (95% CI 0·52-0·92) specificity. A genotyping survey of L. infantum (n = 157) showed that the frequency of MSL varies in a cline from 95% in North East Brazil to <5% in the South East. The MSL was found in the genomes of all L. infantum and L. donovani sequenced isolates from the Old World (n = 671), where miltefosine can have a cure rate higher than 93%. INTERPRETATION: Knowledge on the presence or absence of the MSL in L. infantum will allow stratification of patients prior to treatment, helping to establish better therapeutic strategies for VL treatment. FUND: CNPq, FAPES, GCRF MRC and Wellcome Trust.


Subject(s)
Antiprotozoal Agents/therapeutic use , Genetic Markers , Leishmania infantum/drug effects , Leishmania infantum/genetics , Leishmaniasis, Visceral/drug therapy , Leishmaniasis, Visceral/parasitology , Phosphorylcholine/analogs & derivatives , Antiprotozoal Agents/pharmacology , Brazil , Computational Biology/methods , DNA Copy Number Variations , Genome, Protozoan , Genomics/methods , Geography , Humans , Phosphorylcholine/pharmacology , Phosphorylcholine/therapeutic use , Quantitative Trait Loci , Treatment Failure , Treatment Outcome
17.
Mem Inst Oswaldo Cruz ; 112(8): 572-576, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28767983

ABSTRACT

The Telomeric Repeat-containing RNAs (TERRA) participate in the homeostasis of telomeres in higher eukaryotes. Here, we investigated the expression of TERRA in Leishmania spp. and Trypanosoma brucei and found evidences for its expression as a specific RNA class. The trypanosomatid TERRA are heterogeneous in size and partially polyadenylated. The levels of TERRA transcripts appear to be modulated through the life cycle in both trypanosomatids investigated, suggesting that TERRA play a stage-specific role in the life cycle of these early-branching eukaryotes.


Subject(s)
Leishmania/genetics , RNA/genetics , Repetitive Sequences, Nucleic Acid/genetics , Telomerase/genetics , Trypanosoma brucei brucei/genetics
18.
Trends Parasitol ; 33(11): 858-874, 2017 11.
Article in English | MEDLINE | ID: mdl-28844718

ABSTRACT

In trypanosomatids, etiological agents of devastating diseases, replication is robust and finely controlled to maintain genome stability and function in stressful environments. However, these parasites encode several replication protein components and complexes that show potentially variant composition compared with model eukaryotes. This review focuses on the advances made in recent years regarding the differences and peculiarities of the replication machinery in trypanosomatids, including how such divergence might affect DNA replication dynamics and the replication stress response. Comparing the DNA replication machinery and processes of parasites and their hosts may provide a foundation for the identification of targets that can be used in the development of chemotherapies to assist in the eradication of diseases caused by these pathogens.


Subject(s)
DNA Replication/physiology , Trypanosoma/genetics , Animals , Drug Delivery Systems , Host-Parasite Interactions , Humans , Protozoan Proteins/genetics , Research/trends
19.
Mol Biochem Parasitol ; 216: 45-48, 2017 09.
Article in English | MEDLINE | ID: mdl-28629935

ABSTRACT

Here we present the establishment of an inducible system based on the dimerizable Cre recombinase (DiCre) for controlled gene expression in the protozoan parasite Leishmania. Rapamycin-induced DiCre activation promoted efficient flipping and expression of gene products in a time and dose-dependent manner. The DiCre flipping activity induced the expression of target genes from both integrated and episomal contexts broadening the applicability of the system. We validated the system by inducing the expression of both full length and truncated forms of the checkpoint protein Rad9, which revealed that the highly divergent C-terminal domain of Rad9 is necessary for proper subcellular localization. Thus, by establishing the DiCre-based inducible system we have created and validated a robust new tool for assessing gene function in Leishmania.


Subject(s)
Gene Expression Regulation , Genetic Engineering , Homologous Recombination , Integrases/metabolism , Leishmania major/genetics , Leishmania major/metabolism , Cell Cycle Proteins/metabolism , Gene Order , Genetic Vectors/genetics
20.
Trends Parasitol. ; 33(11): 858-874, 2017.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib17811

ABSTRACT

In trypanosomatids, etiological agents of devastating diseases, replication is robust and finely controlled to maintain genome stability and function in stressful environments. However, these parasites encode several replication protein components and complexes that show potentially variant composition compared with model eukaryotes. This review focuses on the advances made in recent years regarding the differences and peculiarities of the replication machinery in trypanosomatids, including how such divergence might affect DNA replication dynamics and the replication stress response. Comparing the DNA replication machinery and processes of parasites and their hosts may provide a foundation for the identification of targets that can be used in the development of chemotherapies to assist in the eradication of diseases caused by these pathogens.

SELECTION OF CITATIONS
SEARCH DETAIL
...