Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Molecules ; 29(16)2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39202957

ABSTRACT

Pectin is a natural polymer that is found in the cell walls of higher plants. This study presents a comprehensive analysis of pectin extracted from lemon in two different geographic regions (Peddie and Fort Beaufort) in two consecutive years (2023 and 2024) named PP 2023, PP 2024, FBP 2023, and FBP 2024. The dried lemon peels were ground into a powder, sifted to obtain particles of 500 µm, and then subjected to pectin extraction using a conventional method involving mixing lemon peel powder with distilled water, adjusting the pH level to 2.0 with HCl, heating the mixture at 70 °C for 45 min, filtering the acidic extract, and precipitating pectin with ethanol. The yield of these pectin samples was statistically significant, as FBP 2024 had a maximum yield of 12.2 ± 0.02%, PP 2024 had a maximum yield of 13.0 ± 0.02%, FBP 2023 had a maximum yield of 12.2 ± 0.03%, and PP 2023 had a maximum yield of 13.1 ± 0.03%, The variation in yield could be due to the differences in the growing conditions, such as the climate and soil, which could have affected the pectin content in the lemons. The physicochemical characterization of all samples proved that our pectin samples could be used in the pharmaceutical and food industries, with anhydrouronic acid content which was greater than 65%, as suggested by the FAO. The scanning electron microscope analysis of all extracted pectin was rough and jagged, while the commercial pectin displayed a smooth surface morphology with a consistent size. FTIR confirmed the functional groups which were present in our samples. Thermogravimetric analysis was employed to investigate the thermal behavior of the extracted pectin in comparison with commercial pectin. It was found that the extracted pectin had three-step degradation while the commercial pectin had four-step degradation. Additionally, pectin samples have been shown to have antioxidants, as the IC50 of PP 2024, PP 2023, FBP 2023, FBP 2024, and Commercial P was 1062.5 ± 20.0, 1201.3 ± 22.0, 1304.6 ± 19.0, 1382.6 ± 29.9, and 1019.4 ± 17.1 mg/L, respectively. These findings indicate that lemon pectin has promising characteristics as a biopolymer for use in biomedical applications.


Subject(s)
Antioxidants , Citrus , Pectins , Pectins/chemistry , Pectins/isolation & purification , Antioxidants/chemistry , Antioxidants/pharmacology , Citrus/chemistry , Plant Extracts/chemistry , Fruit/chemistry
2.
Molecules ; 29(4)2024 Feb 18.
Article in English | MEDLINE | ID: mdl-38398646

ABSTRACT

Non-communicable diseases (NCDs) are described as a collection of chronic diseases that do not typically develop from an acute infection, have long-term health effects, and frequently require ongoing care and therapy. These diseases include heart disease, stroke, cancer, chronic lung disease, neurological diseases, osteoporosis, mental health disorders, etc. Known synthetic drugs for the treatment or prevention of NCDs become increasingly dangerous over time and pose high risks due to side effects such as hallucination, heart attack, liver failure, etc. As a result, scientists have had to look for other alternatives that are natural products and that are known to be less detrimental and contain useful bioactive compounds. The increasing understanding of the biological and pharmacological significance of carbohydrates has helped to raise awareness of their importance in living systems and medicine, given they play numerous biological roles. For example, pectin has been identified as a class of secondary metabolites found in medicinal plants that may play a significant role in the treatment and management of a variety of NCDs. Pectin is mainly made of homogalacturonan, which is a linear polymer composed primarily of D-galacturonic acid units (at least 65%) linked in a chain by α-(1,4)-glycosidic linkages. There are also modified pectins or derivatives that improve pectin's bioavailability. Pectin is found in the cell walls of higher plants (pteridophytes, angiosperms, and gymnosperms), particularly in the middle lamella of the plant material. Citrus pectin is used in various industries. This article compiles information that has been available for years about the therapeutic importance of pectin in chronic diseases, different modes of pectin extraction, the chemistry of pectin, and the potency of pectin and its derivatives.


Subject(s)
Ferns , Magnoliopsida , Humans , Pectins/chemistry , Magnoliopsida/metabolism , Glycosides , Chronic Disease
SELECTION OF CITATIONS
SEARCH DETAIL