Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Geophys Res Atmos ; 124(13): 6669-6680, 2019 Jul 16.
Article in English | MEDLINE | ID: mdl-31632893

ABSTRACT

Substantial increases in the atmospheric concentration of well-mixed greenhouse gases (notably CO2), such as those projected to occur by the end of the 21st century under large radiative forcing scenarios, have long been known to cause an acceleration of the Brewer-Dobson circulation (BDC) in climate models. More recently, however, several single-model studies have proposed that ozone-depleting substances might also be important drivers of BDC trends. As these studies were conducted with different forcings over different periods, it is difficult to combine them to obtain a robust quantitative picture of the relative importance of ozone-depleting substances as drivers of BDC trends. To this end we here analyze - over identical past and future periods - the output from 20 similarly-forced models, gathered from two recent chemistry-climate modeling intercomparison projects. Our multi-model analysis reveals that ozone-depleting substances are responsible for more than half of the modeled BDC trends in the two decades 1980-2000. We also find that, as a consequence of the Montreal Protocol, decreasing concentrations of ozone-depleting substances in coming decades will strongly decelerate the BDC until the year 2080, reducing the age-of-air trends by more than half, and will thus substantially mitigate the impact of increasing CO2. As ozone-depleting substances impact BDC trends, primarily, via the depletion/recovery of stratospheric ozone over the South Pole, they impart seasonal and hemispheric asymmetries to the trends which may offer opportunities for detection in coming decades.

2.
J Photochem Photobiol B ; 61(3): 94-105, 2001 Aug 30.
Article in English | MEDLINE | ID: mdl-11535408

ABSTRACT

Photobiologically and photochemically relevant UV radiation for the time around the years 2015 and 2050 is estimated by radiative transfer calculations using variable ozone content based on model simulations. The future cloud conditions are assumed unchanged. Assuming various emission scenarios of chlorfluorohydrocarbons (CFCs) and other trace gases, and taking into account future temperature development and changing atmospheric dynamic conditions, ozone values are simulated. On the basis of these data, three different scenarios of the future total ozone content over Central Europe are analysed, which represent from current knowledge, probable as well as optimistic (high ozone and low UV irradiance) and pessimistic (low ozone and high UV irradiance) conditions. According to these scenarios the future development of the UV radiation is expected not to follow the increasing trend of UV irradiation observed during the last three decades. The predicted changes are highly variable with season. During late winter and spring, the enhanced recent UV values will persist for the next decades. Till 2015 a further slight increase is predicted for springtime. In contrast, during summer and fall, the UV level is assumed to remain on the recent level. For 2050 a decrease to values close to that of an anthropogeneous nearly undisturbed ozone chemistry, as it was found around 1970, is predicted. In addition to average long-time variations of the UV irradiance, short-time increase may occur due to ozone minihole events or due to a large volcanic eruption. The latter can produce a marked increase in UV radiation for several months. During ozone minihole events, with maximum occurrence in spring, UV irradiance is typically increased for a few days. Such episodes must be taken into account additionally to the average UV development. They will occur also in the future and result in UV radiation increases against undisturbed conditions, which are similar to present minihole events. These differences are much larger than the average changes predicted for future ozone development.


Subject(s)
Ozone , Ultraviolet Rays , Europe , Forecasting , Models, Theoretical
SELECTION OF CITATIONS
SEARCH DETAIL
...