Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Bioresour Technol ; 386: 129584, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37506944

ABSTRACT

The goal of neutrality in greenhouse gas emissions has intensified the search for renewable fuels. However, it is crucial to ensure sustainability of new technologies before proposing their implementation. This study proposes the use of life-cycle assessment (LCA) as an intermediary tool to identify critical hotspots in the exploration of hydrothermal pretreatment of lignocellulosic biomass, followed by biochemical methane potential assessment. Brewer s spent grain (BSG) was investigated, and laboratory-scale results were applied in an attributional assessment model with business-as-usual serving as the baseline. The LCA revealed that assumptions made in the lab could pose limitations. In Brazil, the two-stage co-digestion of pretreated hydrothermal BSG showed promising prospects, with a reduction to a new value of -54 kg CO2-eq Ton-1 BSG compared to 90 kg CO2-eq Ton-1 BSG in the business-as-usual scenario. Within the top ten global beer producing countries, only Brazil and Spain demonstrated potential for exploring this proposal.


Subject(s)
Carbon Dioxide , Methane , Biomass , Lignin , Edible Grain
2.
Water Res ; 240: 120109, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37244017

ABSTRACT

Sewage sludge (SS) management remains a challenge across the world. We quantified the potential climate change impacts of eight conventional technology configurations (TCs) for SS treatment and disposal by considering four different energy exchanges and using a life cycle assessment (LCA) model that employed uncertainty distributions for 104 model parameters. All TCs showed large climate change loads and savings (net values ranging from 123 to 1148 kg CO2-eq/t TS) when the energy exchange was with a fossil-based energy system, whereas loads and savings were approximately three times lower when the energy exchange was with a renewable energy system. Uncertainty associated with the climate change results was more than 100% with fossil-energy exchange and low TS content of SS but was lower for renewable energy. Landfilling had the greatest climate change impact, while thermal drying with incineration had the highest probability of providing better climate change performance than other TCs. The global sensitivity analysis identified nine critical technological parameters. Many of them can be easily measured for relevant SS and technology levels to improve specific estimates of climate change impact. When all scenarios were optimized to the 20% best cases, thermal drying with incineration outperformed the other TCs. This paper contributes to better quantifying the climate change impacts of different technologies used for sludge treatment given changing energy systems and identifies crucial parameters for further technological development.


Subject(s)
Sewage , Waste Disposal, Fluid , Sewage/analysis , Waste Disposal, Fluid/methods , Climate Change , Incineration
3.
Waste Manag Res ; 41(6): 1081-1088, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36633153

ABSTRACT

Technological comparison and system modelling of sewage sludge treatment are important in terms of sustainable development and climate change mitigation. Dewatering and drying are important processes for reducing volume for transportation and often a requirement for further sludge treatment. Inventory data on mass transfers and material and energy consumptions are therefore crucial in improving and understanding sludge management systems. Reviewing the scientific literature (2003-2021) revealed 55 and 21 datasets on dewatering and drying of sewage sludge, respectively. The scarcity of data did not allow for identifying detailed relationships between inputs and outputs for the technologies, but the reviewed data can serve as the first port of call when planning sludge management. The average total solid (TS) content obtained was statistically different for mechanical dewatering (MDW), deep dewatering, bio-drying (BDR) and thermal drying (TDR). Loss of volatile solids (VS) during dewatering is barely described, but a substantial VS loss was observed for TDR (8%) and BDR (27%). The use of chemical agents in MDW showed typical values of 5-15 g kg-1 TS. The use of energy is low for MDW (average of 0.12 and 0.26 kWh kg-1 TS for raw and digested sludges, respectively) but substantially higher for TDR (average of 3.8 kWh kg-1 TS). The justified inventory data for sludge dewatering and drying provide essential support to system modelling and technological comparison in future studies, but additional data from full-scale plants on energy consumption and the composition of removed water are strongly requested to improve the inventory.


Subject(s)
Sewage , Waste Disposal, Fluid , Sewage/chemistry , Desiccation , Water/chemistry
4.
Waste Manag Res ; 41(5): 970-976, 2023 May.
Article in English | MEDLINE | ID: mdl-36482728

ABSTRACT

System modelling of sewage sludge (SS) treatment attracts a growing interest for better comparison and optimisation of technologies. However, SS parameters need to be generalised to be used in holistic assessments, since scattered data may inhibit the development and interpretation of system models. A review of the literature on SS parameters relevant to modelling SS treatment systems revealed 208 datasets published in 162 publicly available scientific papers. We treated thickened and dewatered sludge in the same data analysis, but in some cases, this was an incorrect assumption. The compositional data showed significant variations, but most of the data subscribed to a lognormal distribution, albeit with varying levels of significance. On average, the thickened sludge contained 3.3 ± 1.7% total solid (TS), and the dewatered sludge contained 21.0 ± 6.7% TS. For the combined data, the average Ash content was 32.4 ± 11.8% of TS. Other characteristic parameters were the lower heating value (LHV) of 22.1 ± 2.1 MJ kg-1 volatile solid (VS) and the biochemical methane potential (BMP) of 0.25 ± 0.11 m3 CH4 kg-1 VS. Fertiliser-related elements were on average 53.3 ± 9.3% C in VS, 6.8 ± 2.2% N in VS, 6.7 ± 2.4% P in Ash and 1.7 ± 1.3% K in Ash. The data reviewed herein provide a good basis for assessing the generality of individual SS data and for selecting key parameters for modelling SS treatment systems. However, the review reveals a need for the better characterisation of SS in the future.


Subject(s)
Methane , Sewage , Methane/analysis , Fertilizers
5.
Waste Manag ; 156: 66-74, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36442328

ABSTRACT

The biological treatment of municipal sewage sludge, including anaerobic digestion and composting, was reviewed with the purpose of establishing inventory data to address all the inputs and outputs related to sludge treatment. We identified 193 scientific papers, resulting in 64 datasets on anaerobic digestion and 35 datasets on composting. For anaerobic digestion, biogas production varied significantly (up to a factor of four) depending on the sludge. A useful correlation was identified between the amount of methane produced and the degradation of volatile solids. According to statistical tests, no significant differences were found in biogas production for mesophilic and thermophilic digesters. In addition, methane content varied significantly, and very few data were available for digestate composition or for energy consumption and recovery. For composting, accurate estimates relating to the degradation of sewage sludge could not be made, since organic bulking materials were part of the final composted product. Data on emissions to air are currently scarce, which points to the need for more published information. The inventory data evaluated herein are useful in the feasibility assessment of the biological treatment of sewage sludge, for comparing technologies, for example in LCA studies and as a basis for evaluating the performance of a specific biological sludge treatment plant. However, a great deal of the reviewed data originated from laboratory and pilot-scale studies, and so there is a need for more complete datasets on the performance of full-scale technologies, in order to establish full inventories and identify differences in technologies and operational conditions.


Subject(s)
Biofuels , Sewage , Biofuels/analysis , Bioreactors , Anaerobiosis , Methane
6.
Environ Sci Technol ; 56(24): 17988-17997, 2022 12 20.
Article in English | MEDLINE | ID: mdl-36469304

ABSTRACT

In Europe, sewage sludge is mostly used in agriculture (49%) or incinerated (25%). Technologies for sludge management that can support the transformation of wastewater treatment plants (WWTPs) to water resource recovery facilities (WRRFs) are emerging. Sludge pyrolysis is one of them. It can generate two main high-value co-products: heat and biochar. Moreover, biochar can be transformed into activated carbon. The economic and environmental impacts of sludge pyrolysis and its comparison to the direct application of sludge in agriculture and incineration are unknown. Therefore, we applied a life cycle assessment (LCA) and a cost-benefit analysis (CBA) of sludge pyrolysis. We quantified environmental externalities in an LCA and then applied the benefit transfer method to monetize these externalities, which were included in an economic CBA. Pyrolysis reduced impacts in five to nine LCA categories and had a positive economic net present value (NPV) compared to using sludge in agriculture. Pyrolysis with biochar production was not better than incineration, showing increased impacts in nine categories and negative NPVs (-19 to -22 €/t sludge). The factor driving differences between the alternatives was the assumed CO2 externality price (164 €/ton CO2-eq) and the removal rate of pharmaceutical micropollutants of the sludge-based activated carbon. High uncertainty in environmental prices is one of the limitations of our study.


Subject(s)
Charcoal , Sewage , Animals , Cost-Benefit Analysis , Carbon Dioxide , Pyrolysis , Water Resources , Life Cycle Stages
7.
J Environ Manage ; 320: 115715, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-35952558

ABSTRACT

Wastewater treatment is an important source of direct and indirect greenhouse gas (GHG) emissions, which some wastewater operators report and account for CO2-eq impacts through carbon footprint evaluations. We investigated the challenges with GHG emissions' accounting of three state-of-the-art energy-efficient wastewater resource recovery facilities (WRRFs) and reviewed their CO2 accounting reports. Our study aimed to highlight the major contributors and factors to estimate emissions, including direct N2O and CH4 emissions and propose recommendations for public reporting of CO2 accounting of WRRFs. We categorised emissions as direct (scope 1), background (scope 2), downstream and avoided emissions (scope 3A and 3B) and evaluated how a change in emission factor may affect how close the WRRFs are to reaching CO2 neutrality. The results show that electricity consumption and direct emissions constitute between 20 and 70% of actual CO2-eq emissions and therefore need careful consideration. All three plants have increasingly offset scope 2 emissions over 2014-2019, resulting in a total reduction of approximately 3211 tons CO2-eq, corresponding to 72% of their needed cuts by 2030 set by the Danish government. No standard factors are used across the plants to estimate emissions. We propose some general recommendations that wastewater operators can apply to correctly report and account for CO2-eq emissions. We also recommend that operators move their long-term focus from CO2 neutrality to CO2-eq reduction and make an effort to measure and quantify scope 1 direct emissions properly. A tax on N2O emissions should be introduced in future policies.


Subject(s)
Greenhouse Gases , Wastewater , Carbon Dioxide/analysis , Carbon Footprint , Greenhouse Effect
8.
Waste Manag ; 146: 106-118, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35588648

ABSTRACT

The thermal treatment of sewage sludge has gained much interest in recent years, as exemplified by the 269 papers found in the scientific literature for the period 2010-2021. We identified 140 datasets in 57 papers presenting inventory data related to mass flows, energy and emissions for the incineration, gasification and pyrolysis of sewage sludge. Sewage sludge incineration (excess oxygen, 850-950 ℃) is an established technology; however, data on flue gas cleaning and air emissions are scarce. The recovery of energy is close to the amount of energy used for incinerating dried sludge (0.2 kWh/kg TS), while dewatered sludge incineration uses more energy (1-2 kWh/kg TS) than what can be recovered. Sewage sludge gasification (limited oxygen, 650-950 ℃) is an experimental technology with four outputs (kg/kg sludge TS): char 0.43, tar 0.02, fly ash 0.06 and syngas 0.53. The data vary significantly in this regard, suggesting than many factors affect the performance of the gasification process. Sewage sludge pyrolysis (no oxygen, 400-800 ℃) is an experimental technology with five outputs (kg/kg sludge TS): char 0.53, tar 0.21, water < 0.05, fly ash set to zero and syngas 0.21. The values are somewhat different for digested sludge. Energy consumption for the pyrolysis of sewage sludge cannot be estimated from the literature. The current literature provides useful data on the main flows of thermal technologies, although large variations are in evidence. However, data are limited on energy consumption and recovery in general, and they are scarce on direct emissions to the air from incineration.


Subject(s)
Coal Ash , Sewage , Incineration , Oxygen , Water
9.
Water Res ; 204: 117554, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34500179

ABSTRACT

To reduce greenhouse gas emissions and promote resource recovery, many wastewater treatment operators are retrofitting existing plants to implement new technologies for energy, nutrient and carbon recovery. In literature, there is a lack of studies that can unfold the potential environmental and economic impacts of the transition that wastewater utilities are undertaking to transform their treatment plants to water resource recovery facilities (WRRFs). When existing, literature studies are mostly based on simulations rather than real plant data and pilot-scale results. This study combines life cycle assessment and economic evaluations to quantify the environmental and economic impacts of retrofitting an existing wastewater treatment plant (WWTP), which already implements energy recovery, into a full-scale WRRF with a series of novel technologies, the majority of which are already implemented full-scale or tested through pilot-scales. We evaluate five technology alternatives against the current performance of the WWTP: real-time N2O control, biological biogas upgrading coupled with power-to-hydrogen, phosphorus recovery, pre-filtration carbon harvest and enhanced nitrogen removal. Our results show that real-time N2O control, biological biogas upgrading and pre-filtration lead to a decrease in climate change and fossil resource depletion impacts. The implementation of the real-time measurement and control of N2O achieved the highest reduction in direct CO2-eq emissions (-35%), with no significant impacts in other environmental categories. Biological biogas upgrading contributed to counterbalancing direct and indirect climate change impacts by substituting natural gas consumption and production. Pre-filtration increased climate change reduction by 13%, while it increased impacts in other categories. Enhanced sidestream nitrogen removal increased climate change impacts by 12%, but decreased marine eutrophication impacts by 14%. The reserve base resource depletion impacts, however, were the highest in the plant configurations implementing biological biogas upgrading coupled with power-to-hydrogen. Environmental improvements generated economic costs for all alternatives except for real-time N2O control. The results expose possible environmental and economic trade-offs and hotspots of the journey that large wastewater treatment plants will undertake in transitioning into resource recovery facilities in the coming years.


Subject(s)
Waste Disposal, Fluid , Water Purification , Biofuels , Wastewater , Water Resources
10.
Waste Manag ; 130: 38-47, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-34049266

ABSTRACT

Biorefining of Chinese food waste (FW) into transport fuels was assessed in terms of amount of fuel produced and over all Global Warming Potential (GWP) for six different scenarios including biogas, biomethane, bioethanol and biodiesel in different combinations. The life-cycle perspective used included GWP aspects of material and energy use, emissions during biorefining and management of residues, as well as substitution of fossil fuels according to the energy content of biofuels. All of the six FW biorefineries revealed savings in GWP ranging from -19 to -138 kg CO2 eqv. per ton of wet FW. Compared to the reference scenario with only anaerobic digestion (S0), introducing biogas upgrading to biomethane (S1) improved the GWP by 37%; while producing bioethanol prior to anaerobic digestion (S2) decreased the savings in GWP. Introducing biodiesel prior to anaerobic digestion (S3) revealed around 60% improvement in GWP, while combining biodiesel and biomethane gave the largest improvement in GWP, 84% compared to the reference scenario, and the most fuels (around 2400 MJ in terms of 30 kg biodiesel and 35 kg biomethane per ton of wet FW). A sensitivity analysis revealed that the electricity production based on the biogas was an important parameter and appears in all refineries, while the results was less sensitive to the production of biodiesel and biomethane. The residue management contributed also to the GWP, but did not vary much among the biorefinery scenarios.


Subject(s)
Global Warming , Refuse Disposal , Biofuels , China , Food
11.
Waste Manag ; 128: 99-113, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-33975140

ABSTRACT

The effects of amending municipal solid waste incineration (MSWI) with carbon capture and storage (CCS) via MEA (Monoethanolamine) technology differ according to the air pollution control technologies and energy recovery systems. Electricity output reduces by one-third for power-only plants and halves for combined heat-and-power plants, while variations in heat recovery depend on the presence of flue gas condensation. MSWI with CCS can capture roughly 800 kg of compressed CO2 per tonne of waste treated. Life cycle assessment (LCA) modelling of MSWI, with and without CCS, illustrates that despite energy penalties, CCS lowers its climate change impact. The difference in climate change impacts as a result of CCS amendment depends on the energy system in which MSWI operates. In a near-future energy system, MSWI with CCS reduces climate change impacts by 700 kg CO2-eq/tonne wet waste compared to MSWI without CCS. The climate change saving of CCS became increasingly larger as the energy system became "greener"; the climate change saving ultimately approached the capture efficiency (85% of CO2 in the flue gas) multiplied by the carbon content of the waste converted to CO2. Sensitivity analysis showed that capture efficiency was the main factor affecting the overall results, with increasing importance in non-fossil fuel-based energy systems. Likely changes in residual waste composition, as source segregation and collection systems improve, had only minor effects on the environmental benefits of CCS. The effects of CCS amendments on 13 other impact categories were marginal compared to the effects of different MSWI configurations.


Subject(s)
Carbon , Incineration , Power Plants , Solid Waste/analysis , Technology
12.
Waste Manag ; 127: 168-178, 2021 May 15.
Article in English | MEDLINE | ID: mdl-33940285

ABSTRACT

Life cycle assessment (LCA) modelling of resource-related technologies can be challenging in the context of circular economy, bioeconomy, recycling and integrated waste management, where materials are recirculated within processes and undergo chemical-physical transformations. This implies redefinition of physical flows within the LCA model. Additionally, physical flows may have non-linear responses to changes in model parameters and background processes, involve activities such as extraction of materials and chemical substances, and directly affect emissions. However, these non-linear responses and links between physical flows within technologies are often neglected. In this study, four novel LCA modelling features are provided: i) mixing and/or redefinition of physical flows; ii) substance recirculation within physical flows; iii) integration of physical flows from background processes into foreground processes; and iv) (multi)-conditional sequence flows, while maintaining substance and material balances throughout the system. As an expansion of EASETECH, an existing user-friendly LCA software tool for modelling of environmental technologies, a "process editor" (EASETECH+) allows implementation of these four features into EASETECH. The modelling features are implemented into EASETECH as seven individual processes "modules" and applied in an illustrative case-study focusing on anaerobic digestion of source-segregated organic household waste. The case-study demonstrated that the new modelling approach for physical flows, including recirculation, links between flows from background to foreground processes and conditional flows, considerably affected both results and interpretation of the LCA modelling. The recommendation is that process-oriented LCA modelling as presented here can provide critical new insight into the environmental performance of waste technologies and systems.


Subject(s)
Waste Management , Animals , Life Cycle Stages , Recycling
13.
Waste Manag ; 87: 454-463, 2019 Mar 15.
Article in English | MEDLINE | ID: mdl-31109546

ABSTRACT

Despite the fact that studies have indicated that a large proportion of textiles is disposed in the waste, only few studies have looked at the content of textiles in waste, and even less have considered the quality of these textiles. However, it is crucial to know both quantity and quality, in order to assess the potential for improved reuse and recycling. Following a new method for assessing the quantity and quality of textile waste, this study assessed residual household waste from 17 areas and small combustible waste from six recycling stations throughout Denmark. The average contents of Clothing and Household textiles in residual household waste were 1.4 ±â€¯0.5% and 0.6 ±â€¯0.3%, respectively, whereas the content was 4.5 ±â€¯2.1% for Clothing and 2.6 ±â€¯1.2% for Household textiles in the small combustibles. On an annual basis each resident discards to 2.4 ±â€¯0.9 kg of Clothing and 1.1 ±â€¯0.5 kg/resident/year of Household textiles with the residual household waste. The quality assessments showed, that an average of 65 ±â€¯8.0% and 65 ±â€¯19.3% of the Clothing and Household textiles were reusable in the residual household waste, while in small combustibles it were an average of 69 ±â€¯5.8% and 66 ±â€¯9.6% of the Clothing and Household textiles. In addition, an average of 12 ±â€¯5.3% and 15 ±â€¯10.5% of the Clothing and Household textiles in residual waste, and an average of 14 ±â€¯3.9% and 16 ±â€¯8.7% of the Clothing and Household textiles in small combustibles, could be recycled. This emphasizes that there is good potential for improving textile waste management, as most of the identified Clothing and Household textiles were misplaced and little were actually waste.


Subject(s)
Textiles , Waste Management , Clothing , Denmark , Recycling
14.
J Environ Sci (China) ; 74: 1-10, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30340662

ABSTRACT

Chemical waste compositions are important for municipal solid waste management, as they determine the pollution potentials from different waste strategies. A representative dataset for chemical characteristics of individual waste fractions is frequently required to assess chemical waste composition, but it is usually reported in developed countries and not in developing countries. In this study, a dataset for Chinese waste was established through careful data screening and assessment, named as CN dataset. Meanwhile, a dataset for Danish waste (DK dataset) was also summarized based on previous studies. In order to quantitatively evaluate the reliabilities of CN and DK datasets, the chemical waste compositions in four Chinese cities were estimated by utilizing both of them, respectively. It is indicated that the usage of CN datasets led to significantly lower discrepancies from the actual values based on laboratory analysis in most cases. Within the datasets, the moisture contents of food waste, paper, textiles, and plastics, the carbon content of food waste, as well as the oxygen content of plastics would induce significant divergences, which should be paid special attention when gathering the information. In addition, the fractional waste compositions in China showed similar features with other developing countries but differ significantly with developed countries. Thus the above-mentioned conclusions could also be true in other developing countries.


Subject(s)
Solid Waste/analysis , China , Cities , Databases, Factual , Denmark , Waste Management
15.
Waste Manag ; 79: 8-21, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30343814

ABSTRACT

Due to the high resource consumption and environmental impacts of textile production, better handling of discarded materials has a great environmental improvement potential. A uniform definition of textile waste and a stringent sorting procedure is a precondition for thorough investigations of discarded textiles. A review of waste sorting studies showed that only a few included textiles, and mainly considered content and not quality. A lack of definition and quality assessment causes a high risk of mistakes when assessing the potential of textile waste prevention. This study establishes a method for sorting and quality assessment of textiles in household waste, validated through dialogue with professional textile sorting centres. It also suggests a minimum waste sample size. The quality assessment is based on analysis of product types, manufacturing methods, fibre composition and a product condition assessment based on 17 criteria. The developed method was applied in a case study and compared with other sorting methods. It showed that 61% of the clothing in residual waste and 83% in small combustibles and that 78% of the household textiles in residual waste and 85% in small combustibles was reusable or recyclable. The comparison with existing methods showed that sorted quantities varied significantly when different sorting methods were applied even when the sorting was done on the same sample. This study suggests a new standard for defining and assessing categories and qualities of used textiles, adapted to real contemporary sorting technologies, and tested on waste samples.


Subject(s)
Textiles , Waste Management
16.
Waste Manag Res ; 36(4): 373-385, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29475411

ABSTRACT

The current waste management system, handling around 500,000 t of household, commercial, and institutional waste annually in the Irkutsk region, Siberia, is based on landfilling in an old landfill with no controls of leachate and gas. Life-cycle assessment modelling of the current system shows that it is a major load on the environment, while the simulation of seven alternative systems results in large savings in many impact categories. With respect to climate change, it is estimated that a saving of about 1200 kg CO2 equivalents is possible per year, per inhabitant, which is a significant reduction in greenhouse gas emissions. The best alternatives involve efficient energy recovery from waste and recycling by source separation for commercial and institutional waste, the major waste type in the Irkutsk region. Recycling of household waste seems less attractive, and it is therefore recommended only to consider this option after experience has been gained with the commercial and institutional waste. Sensitivity analysis shows that recovery of energy - in particular electricity, heat, and steam - from waste is crucial to the environmental performance of the waste management system. This relates to the efficiencies of energy recovery as well as what the recovered energy substitutes, that is, the 'dirtier' the off-set energy, the higher the environmental savings for the waste management system. Since recovered energy may be utilised by only a few energy grids or industrial users, it is recommended to perform additional local assessments of the integration of the waste energy into existing systems and facilities.


Subject(s)
Waste Management , Refuse Disposal , Russia , Siberia , Waste Disposal Facilities
17.
Waste Manag ; 69: 545-557, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28797625

ABSTRACT

An attributional life cycle assessment (LCA) of the management of 1ton of household waste was conducted in accordance with ISO 14044:2006 and the ILCD Handbook for seven European countries, namely Germany, Denmark, France, UK, Italy, Poland and Greece, representing different household waste compositions, waste management practices, technologies, and energy systems. National data were collected from a range of sources regarding household waste composition, household sorting efficiency, collection, waste treatments, recycling, electricity and heat composition, and technological efficiencies. The objective was to quantify the environmental performance in the different countries, in order to analyze the sources of the main environmental impacts and national differences which affect the results. In most of the seven countries, household waste management provides environmental benefits when considering the benefits of recycling of materials and recovering and utilization of energy. Environmental benefits come from paper recycling and, to a lesser extent, the recycling of metals and glass. Waste-to-energy plants can lead to an environmental load (as in France) or a saving (Germany and Denmark), depending mainly on the composition of the energy being substituted. Sensitivity analysis and a data quality assessment identified a range of critical parameters, suggesting from where better data should be obtained. The study concluded that household waste management is environmentally the best in European countries with a minimum reliance on landfilling, also induced by the implementation of the Waste Hierarchy, though environmental performance does not correlate clearly with the rate of material recycling. From an environmental point of view, this calls for a change in the waste management paradigm, with less focus on where the waste is routed and more of a focus on the quality and utilization of recovered materials and energy.


Subject(s)
Waste Management/methods , Waste Products/analysis , Denmark , France , Germany , Greece , Housing/statistics & numerical data , Italy , Poland , Waste Management/standards , Waste Management/statistics & numerical data , Waste Products/statistics & numerical data
18.
Environ Sci Technol ; 51(6): 3119-3127, 2017 03 21.
Article in English | MEDLINE | ID: mdl-28263562

ABSTRACT

The development of sustainable solid waste management (SWM) systems requires consideration of both economic and environmental impacts. Societal life-cycle costing (S-LCC) provides a quantitative framework to estimate both economic and environmental impacts, by including "budget costs" and "externality costs". Budget costs include market goods and services (economic impact), whereas externality costs include effects outside the economic system (e.g., environmental impact). This study demonstrates the applicability of S-LCC to SWM life-cycle optimization through a case study based on an average suburban U.S. county of 500 000 people generating 320 000 Mg of waste annually. Estimated externality costs are based on emissions of CO2, CH4, N2O, PM2.5, PM10, NOx, SO2, VOC, CO, NH3, Hg, Pb, Cd, Cr (VI), Ni, As, and dioxins. The results indicate that incorporating S-LCC into optimized SWM strategy development encourages the use of a mixed waste material recovery facility with residues going to incineration, and separated organics to anaerobic digestion. Results are sensitive to waste composition, energy mix and recycling rates. Most of the externality costs stem from SO2, NOx, PM2.5, CH4, fossil CO2, and NH3 emissions. S-LCC proved to be a valuable tool for policy analysis, but additional data on key externality costs such as organic compounds emissions to water would improve future analyses.


Subject(s)
Solid Waste , Waste Management , Costs and Cost Analysis , Incineration , Recycling , Refuse Disposal
19.
Water Res ; 88: 538-549, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-26540509

ABSTRACT

Life cycle assessment (LCA) has been increasingly used in the field of wastewater treatment where the focus has been to identify environmental trade-offs of current technologies. In a novel approach, we use LCA to support early stage research and development of a biochemical system for wastewater resource recovery. The freshwater and nutrient content of wastewater are recognized as potential valuable resources that can be recovered for beneficial reuse. Both recovery and reuse are intended to address existing environmental concerns, for example, water scarcity and use of non-renewable phosphorus. However, the resource recovery may come at the cost of unintended environmental impacts. One promising recovery system, referred to as TRENS, consists of an enhanced biological phosphorus removal and recovery system (EBP2R) connected to a photobioreactor. Based on a simulation of a full-scale nutrient and water recovery system in its potential operating environment, we assess the potential environmental impacts of such a system using the EASETECH model. In the simulation, recovered water and nutrients are used in scenarios of agricultural irrigation-fertilization and aquifer recharge. In these scenarios, TRENS reduces global warming up to 15% and marine eutrophication impacts up to 9% compared to conventional treatment. This is due to the recovery and reuse of nutrient resources, primarily nitrogen. The key environmental concerns obtained through the LCA are linked to increased human toxicity impacts from the chosen end use of wastewater recovery products. The toxicity impacts are from both heavy metals release associated with land application of recovered nutrients and production of AlCl3, which is required for advanced wastewater treatment prior to aquifer recharge. Perturbation analysis of the LCA pinpointed nutrient substitution and heavy metals content of algae biofertilizer as critical areas for further research if the performance of nutrient recovery systems such as TRENS is to be better characterized. Our study provides valuable feedback to the TRENS developers and identifies the importance of system expansion to include impacts outside the immediate nutrient recovery system itself. The study also show for the first time the successful evaluation of urban-to-agricultural water systems in EASETECH.


Subject(s)
Decision Support Techniques , Waste Disposal, Fluid/methods , Wastewater/analysis , Water Purification/methods , Conservation of Natural Resources , Denmark , Waste Disposal, Fluid/instrumentation , Water Purification/instrumentation
20.
Waste Manag ; 46: 362-72, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26424072

ABSTRACT

The quantity of leachate is crucial when assessing pollution emanating from municipal landfills. In most cases, existing leachate quantification measures only take into account one source - precipitation, which resulted in serious underestimation in China due to its waste properties: high moisture contents. To overcome this problem, a new estimation method was established considering two sources: (1) precipitation infiltrated throughout waste layers, which was simulated with the HELP model, (2) water squeezed out of the waste itself, which was theoretically calculated using actual data of Chinese waste. The two sources depended on climate conditions and waste characteristics, respectively, which both varied in different regions. In this study, 31 Chinese cities were investigated and classified into three geographic regions according to landfill leachate generation performance: northwestern China (China-NW) with semi-arid and temperate climate and waste moisture content of about 46.0%, northern China (China-N) with semi-humid and temperate climate and waste moisture content of about 58.2%, and southern China (China-S) with humid and sub-tropical/tropical climate and waste moisture content of about 58.2%. In China-NW, accumulated leachate amounts were very low and mainly the result of waste degradation, implying on-site spraying/irrigation or recirculation may be an economic approach to treatment. In China-N, water squeezed out of waste by compaction totaled 22-45% of overall leachate amounts in the first 40 years, so decreasing the initial moisture content of waste arriving at landfills could reduce leachate generation. In China-S, the leachate generated by infiltrated precipitation after HDPE geomembranes in top cover started failing, contributed more than 60% of the overall amounts over 100 years of landfilling. Therefore, the quality and placing of HDPE geomembranes in the top cover should be controlled strictly for the purpose of mitigation leachate generation.


Subject(s)
Environmental Monitoring/methods , Waste Disposal Facilities , Waste Management , Water Pollutants, Chemical/analysis , China , Cities , Climate , Models, Theoretical
SELECTION OF CITATIONS
SEARCH DETAIL
...