Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Neuropharmacology ; 231: 109491, 2023 06 15.
Article in English | MEDLINE | ID: mdl-36924923

ABSTRACT

Neuroplasticity refers to the ability of brain circuits to reorganize and change the properties of the network, resulting in alterations in brain function and behavior. It is traditionally believed that neuroplasticity is influenced by external stimuli, learning, and experience. Intriguingly, there is new evidence suggesting that endogenous signals from the body's periphery may play a role. The gut microbiota, a diverse community of microorganisms living in harmony with their host, may be able to influence plasticity through its modulation of the gut-brain axis. Interestingly, the maturation of the gut microbiota coincides with critical periods of neurodevelopment, during which neural circuits are highly plastic and potentially vulnerable. As such, dysbiosis (an imbalance in the gut microbiota composition) during early life may contribute to the disruption of normal developmental trajectories, leading to neurodevelopmental disorders. This review aims to examine the ways in which the gut microbiota can affect neuroplasticity. It will also discuss recent research linking gastrointestinal issues and bacterial dysbiosis to various neurodevelopmental disorders and their potential impact on neurological outcomes. This article is part of the Special Issue on "Microbiome & the Brain: Mechanisms & Maladies".


Subject(s)
Gastrointestinal Microbiome , Neurodevelopmental Disorders , Humans , Dysbiosis , Brain , Neuronal Plasticity
2.
Mol Psychiatry ; 2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36737483

ABSTRACT

Functional and structural connectivity alterations in short- and long-range projections have been reported across neurodevelopmental disorders (NDD). Interhemispheric callosal projection neurons (CPN) represent one of the major long-range projections in the brain, which are particularly important for higher-order cognitive function and flexibility. However, whether a causal relationship exists between interhemispheric connectivity alterations and cognitive deficits in NDD remains elusive. Here, we focused on CDKL5 Deficiency Disorder (CDD), a severe neurodevelopmental disorder caused by mutations in the X-linked Cyclin-dependent kinase-like 5 (CDKL5) gene. We found an increase in homotopic interhemispheric connectivity and functional hyperconnectivity across higher cognitive areas in adult male and female CDKL5-deficient mice by resting-state functional MRI (rs-fMRI) analysis. This was accompanied by an increase in the number of callosal synaptic inputs but decrease in local synaptic connectivity in the cingulate cortex of juvenile CDKL5-deficient mice, suggesting an impairment in excitatory synapse development and a differential role of CDKL5 across excitatory neuron subtypes. These deficits were associated with significant cognitive impairments in CDKL5 KO mice. Selective deletion of CDKL5 in the largest subtype of CPN likewise resulted in an increase of functional callosal inputs, without however significantly altering intracortical cingulate networks. Notably, such callosal-specific changes were sufficient to cause cognitive deficits. Finally, when CDKL5 was selectively re-expressed only in this CPN subtype, in otherwise CDKL5-deficient mice, it was sufficient to prevent the cognitive impairments of CDKL5 mutants. Together, these results reveal a novel role of CDKL5 by demonstrating that it is both necessary and sufficient for proper CPN connectivity and cognitive function and flexibility, and further validates a causal relationship between CPN dysfunction and cognitive impairment in a model of NDD.

3.
Cell Mol Life Sci ; 80(1): 28, 2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36607453

ABSTRACT

Little is known about the impact of metabolic stimuli on brain tissue at a molecular level. The ketone body beta-hydroxybutyrate (BHB) can be a signaling molecule regulating gene transcription. Thus, we assessed lysine beta-hydroxybutyrylation (K-bhb) levels in proteins extracted from the cerebral cortex of mice undergoing a ketogenic metabolic challenge (48 h fasting). We found that fasting enhanced K-bhb in a variety of proteins including histone H3. ChIP-seq experiments showed that K9 beta-hydroxybutyrylation of H3 (H3K9-bhb) was significantly enriched by fasting on more than 8000 DNA loci. Transcriptomic analysis showed that H3K9-bhb on enhancers and promoters correlated with active gene expression. One of the most enriched functional annotations both at the epigenetic and transcriptional level was "circadian rhythms''. Indeed, we found that the diurnal oscillation of specific transcripts was modulated by fasting at distinct zeitgeber times both in the cortex and suprachiasmatic nucleus. Moreover, specific changes in locomotor activity daily features were observed during re-feeding after 48-h fasting. Thus, our results suggest that fasting remarkably impinges on the cerebral cortex transcriptional and epigenetic landscape, and BHB acts as a powerful epigenetic molecule in the brain through direct and specific histone marks remodeling in neural tissue cells.


Subject(s)
Histones , Ketone Bodies , Mice , Animals , Histones/metabolism , 3-Hydroxybutyric Acid/metabolism , Ketone Bodies/metabolism , Brain/metabolism , Gene Expression
4.
Int J Cancer ; 121(3): 528-35, 2007 Aug 01.
Article in English | MEDLINE | ID: mdl-17372905

ABSTRACT

The extravasation of cancer cells is a key step of the metastatic cascade. Polymorphisms in genes encoding adhesion molecules can facilitate metastasis by increasing the strength of interaction between tumor and endothelial cells as well as impacting other properties of cancer cells. We investigated the Ser128Arg (a561c at the nucleotide level) polymorphism in the E-selectin gene in patients with metastatic colon cancer and its functional significance. Genotyping for a561c polymorphism was performed on 172 cancer patients and on an age-matched control population. The colon cancer group was divided into groups with (M(+)) and without observable metastasis (M(-)). For in vitro functional assays, Huvec transfected cells expressing wild-type (WT) or the S128R variant of E-selectin were established to study in vitro binding ability and signal transduction processes of T84 colon cancer cell line. Our results demonstrated that the Arginine(128) allele was more prevalent in the M(+) group than in the M(-) group or normal controls (p < 0.005; odds ratio, 1.56; 95% confidence interval (CI) 1.16-1.92; p < 0.001, odds ratio = 1.65; CI = 1.24-1.99, respectively). In vitro, S128R E-selectin transfected Huvec cells, supported increased adhesion as well as increased cellular signaling of T84 cancer cells compared to WT E-selectin and mock-transfected Huvec cells. These findings suggest that the E-selectin S128R polymorphism can functionally affect tumor-endothelial interactions as well as motility and signaling properties of neoplastic cells that may modulate the metastatic phenotype.


Subject(s)
Colonic Neoplasms/genetics , E-Selectin/genetics , Neoplasm Metastasis/genetics , Polymorphism, Genetic , Arginine , Cell Adhesion , Cell Movement , Colonic Neoplasms/pathology , Female , Humans , Male , Middle Aged , Phenotype , Serine , Signal Transduction/genetics , Transfection , Tumor Cells, Cultured
5.
Virchows Arch ; 449(1): 48-61, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16612624

ABSTRACT

To better understand the relationship between tumor heterogeneity, differentiation, and metastasis, suitable experimental models permitting in vitro and in vivo studies are necessary. A new variant cell line (T84SF) exhibiting an altered phenotype was recently selected from a colon cancer cell line (T84) by repetitive plating on TNF-alpha treated human endothelial cells and subsequent selection for adherent cells. The matched pair of cell lines provides a useful system to investigate the extravasation step of the metastatic cascade. Since analysis of morphological differences can be instructive to the understanding of metastatic potential of tumor cells, we compared the ultrastructural and functional phenotype of T84 and T84SF cells in vitro and in vivo. The reported ultrastructural features evidence differences between the two cell lines; selected cells showed a marked pleomorphism of cell size and nuclei, shape, and greater surface complexity. These morphological differences were also coupled with biochemical data showing a distinct tyrosine phosphorylation-based signaling, an altered localization of beta-catenin, MAPK, and AKT activation, as well as an increased expression in T84SF cells of Bcl-X(L), a major regulator of apoptosis. Therefore, these cell lines represent a step forward in the development of appropriate models in vitro and in vivo to investigate colon cancer progression.


Subject(s)
Adenocarcinoma/pathology , Cell Line, Tumor/pathology , Colonic Neoplasms/pathology , Neoplasm Metastasis/pathology , Adenocarcinoma/metabolism , Apoptosis , Biomarkers, Tumor/metabolism , Cell Line, Tumor/metabolism , Cell Nucleus/ultrastructure , Colonic Neoplasms/metabolism , Cytoplasmic Vesicles/enzymology , Cytoplasmic Vesicles/ultrastructure , Disease Progression , Gelatinases/metabolism , Humans , Microscopy, Electron, Transmission , Phenotype , Signal Transduction , bcl-X Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...