Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; 29(1): e202202729, 2023 Jan 02.
Article in English | MEDLINE | ID: mdl-36194105

ABSTRACT

The protonation of commercially available porphyrin ligands yields a class of bifunctional catalysts able to promote the synthesis of N-alkyl oxazolidinones by CO2 cycloaddition to corresponding aziridines. The catalytic system does not require the presence of any Lewis base or additive, and shows interesting features both in terms of cost effectiveness and eco-compatibility. The metal-free methodology is active even with a low catalytic loading of 1 % mol, and the chemical stability of the protonated porphyrin allowed it to be recycled three times without any decrease in performance. In addition, a DFT study was performed in order to suggest how a simple protonated porphyrin can mediate CO2 cycloaddition to aziridines to yield oxazolidinones.


Subject(s)
Aziridines , Oxazolidinones , Porphyrins , Carbon Dioxide , Metals
2.
Chem Soc Rev ; 49(14): 4867-4905, 2020 Jul 21.
Article in English | MEDLINE | ID: mdl-32530443

ABSTRACT

Transition-metal-catalyzed carbene transfer reactions, involving diazo compounds and their precursors, are powerful tools for creating new C-C bonds. Depending on the involved catalytic system, the carbene insertion can efficiently be driven towards a specific functional group for the synthesis of a wide portfolio of fine chemicals. The present report is focused on the catalytic activity of iron catalysts in promoting alkene cyclopropanations, C-H and X-H (X = N, O, S, Se, Si, Sn, Ge) functionalizations. Porphyrin, porphyrinoid and non-heme iron complexes are discussed by analyzing experimental studies and theoretical calculations performed for proposing reaction mechanisms. The catalytic activity of artificial iron biocatalysts is also briefly reported in order to underline the similarities and differences between reaction mechanisms mediated by modified biocatalysts and synthetic catalysts. This review summarizes the achievements made in this field since 2006.

3.
Chemistry ; 25(72): 16591-16605, 2019 Dec 20.
Article in English | MEDLINE | ID: mdl-31626355

ABSTRACT

A symbiotic experimental/computational study analyzed the Ru(TPP)(NAr)2 -catalyzed one-pot formation of indoles from alkynes and aryl azides. Thirty different C3 -substituted indoles were synthesized and the best performance, in term of yields and regioselectivities, was observed when reacting ArC≡CH alkynes with 3,5-(EWG)2 C6 H3 N3 azides, whereas the reaction was less efficient when using electron-rich aryl azides. A DFT analysis describes the reaction mechanism in terms of the energy costs and orbital/electronic evolutions; the limited reactivity of electron-rich azides was also justified. In summary, PhC≡CH alkyne interacts with one NAr imido ligand of Ru(TPP)(NAr)2 to give a residually dangling C(Ph) group, which, by coupling with a C(H) unit of the N-aryl substituent, forms a 5+6 bicyclic molecule. In the process, two subsequent spin changes allow inverting the conformation of the sp2 C(Ph) atom and its consequent electrophilic-like attack to the aromatic ring. The bicycle isomerizes to indole via a two-step outer sphere H-migration. Eventually, a 'Ru(TPP)(NAr)' mono-imido active catalyst is reformed after each azide/alkyne reaction.

SELECTION OF CITATIONS
SEARCH DETAIL
...