Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 384(6696): 652-660, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38723089

ABSTRACT

Nasal chemosensation is considered the evolutionarily oldest mammalian sense and, together with somatosensation, is crucial for neonatal well-being before auditory and visual pathways start engaging the brain. Using anatomical and functional approaches in mice, we reveal that odor-driven activity propagates to a large part of the cortex during the first postnatal week and enhances whisker-evoked activation of primary whisker somatosensory cortex (wS1). This effect disappears in adult animals, in line with the loss of excitatory connectivity from olfactory cortex to wS1. By performing neonatal odor deprivation, followed by electrophysiological and behavioral work in adult animals, we identify a key transient regulation of nasal chemosensory information necessary for the development of wS1 sensory-driven dynamics and somatosensation. Our work uncovers a cross-modal critical window for nasal chemosensation-dependent somatosensory functional maturation.


Subject(s)
Nose , Olfactory Cortex , Somatosensory Cortex , Animals , Mice , Animals, Newborn , Mice, Inbred C57BL , Nose/physiology , Nose/anatomy & histology , Odorants , Olfactory Cortex/growth & development , Olfactory Cortex/physiology , Olfactory Cortex/ultrastructure , Sensory Deprivation/physiology , Smell/physiology , Somatosensory Cortex/growth & development , Somatosensory Cortex/physiology , Somatosensory Cortex/ultrastructure , Vibrissae/physiology
2.
Cell Rep ; 42(8): 112947, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37572323

ABSTRACT

The molecular code that controls synapse formation and maintenance in vivo has remained quite sparse. Here, we identify that the secreted protein Adamtsl3 functions as critical hippocampal synapse organizer acting through the transmembrane receptor DCC (deleted in colorectal cancer). Traditionally, DCC function has been associated with glutamatergic synaptogenesis and plasticity in response to Netrin-1 signaling. We demonstrate that early post-natal deletion of Adamtsl3 in neurons impairs DCC protein expression, causing reduced density of both glutamatergic and GABAergic synapses. Adult deletion of Adamtsl3 in either GABAergic or glutamatergic neurons does not interfere with DCC-Netrin-1 function at glutamatergic synapses but controls DCC signaling at GABAergic synapses. The Adamtsl3-DCC signaling unit is further essential for activity-dependent adaptations at GABAergic synapses, involving DCC phosphorylation and Src kinase activation. These findings might be particularly relevant for schizophrenia because genetic variants in Adamtsl3 and DCC have been independently linked with schizophrenia in patients.


Subject(s)
Neurons , Synapses , Humans , DCC Receptor/metabolism , Netrin-1/metabolism , Neurons/metabolism , Signal Transduction , src-Family Kinases/metabolism , Synapses/metabolism , Animals
3.
Psychophysiology ; 53(6): 796-805, 2016 06.
Article in English | MEDLINE | ID: mdl-26914941

ABSTRACT

Detailed analysis of oculomotor function phenotypes in antisaccade, smooth eye pursuit, and active fixation tasks was performed in a sample of 44 patients with schizophrenia, 34 patients with obsessive compulsive disorder (OCD), and 45 matched healthy controls. A common pattern of performance deficits in both schizophrenia and OCD emerged including higher antisaccade error rate, increased latency for corrective antisaccades, as well as higher rates of unwanted saccades in smooth eye pursuit compared to healthy controls. This common pattern could be related to the dysfunction of a network of cognitive control that is present in both disorders, including the dorsolateral prefrontal cortex, the posterior parietal cortex, and the anterior cingulate cortex. In contrast, only patients with schizophrenia showed a specific increase for correct antisaccade mean latency and the intrasubject variability of latency for error prosaccades as well as a decrease in the gain for smooth eye pursuit, suggesting a specific deficit in saccadic motor control and the frontal eye field in schizophrenia that is not present in OCD. A specific deficit in fixation stability (increased frequency of unwanted saccades during active fixation) was observed only for OCD patients pointing to a deficit in the frontostriatal network controlling fixation. This deficit was pronounced for OCD patients receiving additional antipsychotic medication. In conclusion, oculomotor function showed shared and distinct patterns of deviance for schizophrenia and OCD pointing toward shared and specific neurobiological substrates for these psychiatric disorders.


Subject(s)
Eye Movements , Obsessive-Compulsive Disorder/physiopathology , Schizophrenia/physiopathology , Schizophrenic Psychology , Adolescent , Adult , Eye Movement Measurements , Fixation, Ocular , Humans , Male , Pursuit, Smooth , Saccades , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...