Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Food Chem ; 321: 126680, 2020 Aug 15.
Article in English | MEDLINE | ID: mdl-32247181

ABSTRACT

Seed phytic acid reduces mineral bioavailability by chelating minerals. Consumption of common bean seeds with the low phytic acid 1 (lpa1) mutation improved iron status in human trials but caused adverse gastrointestinal effects, presumably due to increased stability of lectin phytohemagglutinin L (PHA-L) compared to the wild type (wt). A hard-to-cook (HTC) defect observed in lpa1 seeds intensified this problem. We quantified the HTC phenotype of lpa1 common beans with three genetic backgrounds. The HTC phenotype in the lpa1 black bean line correlated with the redistribution of calcium particularly in the cell walls, providing support for the "phytase-phytate-pectin" theory of the HTC mechanism. Furthermore, the excess of free cations in the lpa1 mutation in combination with different PHA alleles affected the stability of PHA-L lectin.


Subject(s)
Calcium/chemistry , Lectins/chemistry , Phaseolus/chemistry , Phytic Acid/chemistry , Phytohemagglutinins/chemistry , Cooking , Hardness , Hot Temperature , Mutation , Phaseolus/genetics , Seeds/chemistry , Seeds/genetics
2.
PLoS One ; 13(6): e0198394, 2018.
Article in English | MEDLINE | ID: mdl-29856884

ABSTRACT

Pearl millet [Pennisetum glaucum (L.) R. Br.] is an important "orphan" cereal and the most widely grown of all the millet species worldwide. It is also the sixth most important cereal in the world after wheat, rice, maize, barley, and sorghum, being largely grown and used in West Africa as well as in India and Pakistan. The present study was carried out in the frame of a program designed to increase benefits and reduce potential health problems deriving from the consumption of pearl millet. The specific goal was to provide a database of information on the variability existing in pearl millet germplasm as to the amounts of phytate, the most relevant antinutrient compound, and the goitrogenic compounds C-glycosylflavones (C-GFs) accumulated in the grain.Results we obtained clearly show that, as indicated by the range in values, a substantial variability subsists across the investigated pearl millet inbred lines as regards the grain level of phytic acid phosphate, while the amount of C-GFs shows a very high variation. Suitable potential parents to be used in breeding programs can be therefore chosen from the surveyed material in order to create new germplasm with increased nutritional quality and food safety. Moreover, we report novel molecular data showing which genes are more relevant for phytic acid biosynthesis in the seeds as well as a preliminary analysis of a pearl millet orthologous gene for C-GFs biosynthesis. These results open the way to dissect the genetic determinants controlling key seed nutritional phenotypes and to the characterization of their impact on grain nutritional value in pearl millet.


Subject(s)
Antithyroid Agents , Food Safety/methods , Metabolic Networks and Pathways/genetics , Pennisetum , Phytic Acid , Antithyroid Agents/analysis , Antithyroid Agents/metabolism , Cenchrus/chemistry , Cenchrus/genetics , Cloning, Molecular , Edible Grain/chemistry , Edible Grain/genetics , Gene Expression Regulation, Plant , Genes, Plant , Genetic Variation , Pennisetum/chemistry , Pennisetum/genetics , Pennisetum/metabolism , Phenotype , Phytic Acid/analysis , Phytic Acid/metabolism , Plant Breeding
3.
Plant Sci ; 270: 1-12, 2018 May.
Article in English | MEDLINE | ID: mdl-29576062

ABSTRACT

Phytic acid (InsP6) is the main storage form of phosphate in seeds. In the plant it plays an important role in response to environmental stress and hormonal changes. InsP6 is a strong chelator of cations, reducing the bioavailability of essential minerals in the diet. Only a common bean low phytic acid (lpa1) mutant, affected in the PvMRP1 gene, coding for a putative tonoplastic phytic acid transporter, was described so far. This mutant is devoid of negative pleiotropic effects normally characterising lpa mutants. With the aim of isolating new common bean lpa mutants, an ethyl methane sulfonate mutagenized population was screened, resulting in the identification of an additional lpa1 allele. Other putative lpa lines were also isolated. The PvMRP2 gene is probably able to complement the phenotype of mutants affected in the PvMRP1 gene in tissues other than the seed. Only the PvMRP1 gene is expressed at appreciable levels in cotyledons. Arabidopsis thaliana and Medicago truncatula transgenic plants harbouring 1.5 kb portions of the intergenic 5' sequences of both PvMRP genes, fused upstream of the GUS reporter, were generated. GUS activity in different organs suggests a refined, species-specific mechanisms of regulation of gene expression for these two PvMRP genes.


Subject(s)
ATP-Binding Cassette Transporters/genetics , Arabidopsis/genetics , Medicago truncatula/genetics , Phaseolus/genetics , Phytic Acid/metabolism , Promoter Regions, Genetic/genetics , ATP-Binding Cassette Transporters/metabolism , Arabidopsis/metabolism , Gene Expression Regulation, Plant , Genes, Reporter , Medicago truncatula/metabolism , Mutation , Phaseolus/metabolism , Phenotype , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified , Seeds/genetics , Seeds/metabolism , Species Specificity
4.
Theor Appl Genet ; 126(3): 647-61, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23117719

ABSTRACT

In common bean (Phaseolus vulgaris L.), the most abundant seed proteins are the storage protein phaseolin and the family of closely related APA proteins (arcelin, phytohemagglutinin and α-amylase inhibitor). High variation in APA protein composition has been described and the presence of arcelin (Arc) has been associated with bean resistance against two bruchid beetles, the bean weevil (Acanthoscelides obtectus Say) and the Mexican bean weevil (Zabrotes subfasciatus Bohemian). So far, seven Arc variants have been identified, all in wild accessions, however, only those containing Arc-4 were reported to be resistant to both species. Although many efforts have been made, a successful breeding of this genetic trait into cultivated genotypes has not yet been achieved. Here, we describe a newly collected wild accession (named QUES) and demonstrate its resistance to both A. obtectus and Z. subfasciatus. Immunological and proteomic analyses of QUES seed protein composition indicated the presence of new Arc and arcelin-like (ARL) polypeptides of about 30 and 27 kDa, respectively. Sequencing of cDNAs coding for QUES APA proteins confirmed that this accession contains new APA variants, here referred to as Arc-8 and ARL-8. Moreover, bioinformatic analysis showed the two proteins are closely related to APA components present in the G12949 wild bean accession, which contains the Arc-4 variant. The presence of these new APA components, combined with the observations that they are poorly digested and remain very abundant in A. obtectus feces, so-called frass, suggest that the QUES APA locus is involved in the bruchid resistance. Moreover, molecular analysis indicated a lower complexity of the locus compared to that of G12949, suggesting that QUES should be considered a valuable source of resistance for further breeding purposes.


Subject(s)
Alleles , Genotype , Phaseolus/genetics , Plant Lectins/genetics , Weevils , Animals , Breeding , Computational Biology , DNA, Complementary/genetics , DNA, Complementary/isolation & purification , Electrophoresis, Polyacrylamide Gel , Genetic Loci , Phytohemagglutinins/genetics , Phytohemagglutinins/metabolism , Plant Lectins/metabolism , Proteomics , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...