Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Bioinformatics ; 12: 482, 2011 Dec 19.
Article in English | MEDLINE | ID: mdl-22182279

ABSTRACT

BACKGROUND: The Immune Epitope Database (IEDB) project manually curates information from published journal articles that describe immune epitopes derived from a wide variety of organisms and associated with different diseases. In the past, abstracts of scientific articles were retrieved by broad keyword queries of PubMed, and were classified as relevant (curatable) or irrelevant (not curatable) to the scope of the database by a Naïve Bayes classifier. The curatable abstracts were subsequently manually classified into categories corresponding to different disease domains. Over the past four years, we have examined how to further improve this approach in order to enhance classification performance and to reduce the need for manual intervention. RESULTS: Utilizing 89,884 abstracts classified by a domain expert as curatable or uncuratable, we found that a SVM classifier outperformed the previously used Naïve Bayes classifier for curatability predictions with an AUC of 0.899 and 0.854, respectively. Next, using a non-hierarchical and a hierarchical application of SVM classifiers trained on 22,833 curatable abstracts manually classified into three levels of disease specific categories we demonstrated that a hierarchical application of SVM classifiers outperformed non-hierarchical SVM classifiers for categorization. Finally, to optimize the hierarchical SVM classifiers' error profile for the curation process, cost sensitivity functions were developed to avoid serious misclassifications. We tested our design on a benchmark dataset of 1,388 references and achieved an overall category prediction accuracy of 94.4%, 93.9%, and 82.1% at the three levels of categorization, respectively. CONCLUSIONS: A hierarchical application of SVM algorithms with cost sensitive output weighting enabled high quality reference classification with few serious misclassifications. This enabled us to significantly reduce the manual component of abstract categorization. Our findings are relevant to other databases that are developing their own document classifier schema and the datasets we make available provide large scale real-life benchmark sets for method developers.


Subject(s)
Algorithms , Databases, Factual , Epitopes , Bayes Theorem , Epitopes/classification , Humans , Information Systems , PubMed , Support Vector Machine
2.
Nucleic Acids Res ; 38(Database issue): D854-62, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19906713

ABSTRACT

The Immune Epitope Database (IEDB, www.iedb.org) provides a catalog of experimentally characterized B and T cell epitopes, as well as data on Major Histocompatibility Complex (MHC) binding and MHC ligand elution experiments. The database represents the molecular structures recognized by adaptive immune receptors and the experimental contexts in which these molecules were determined to be immune epitopes. Epitopes recognized in humans, nonhuman primates, rodents, pigs, cats and all other tested species are included. Both positive and negative experimental results are captured. Over the course of 4 years, the data from 180,978 experiments were curated manually from the literature, which covers approximately 99% of all publicly available information on peptide epitopes mapped in infectious agents (excluding HIV) and 93% of those mapped in allergens. In addition, data that would otherwise be unavailable to the public from 129,186 experiments were submitted directly by investigators. The curation of epitopes related to autoimmunity is expected to be completed by the end of 2010. The database can be queried by epitope structure, source organism, MHC restriction, assay type or host organism, among other criteria. The database structure, as well as its querying, browsing and reporting interfaces, was completely redesigned for the IEDB 2.0 release, which became publicly available in early 2009.


Subject(s)
Computational Biology/methods , Databases, Genetic , Epitopes/chemistry , Immune System/physiology , Immunogenetics/methods , Animals , Communicable Diseases/immunology , Communicable Diseases/metabolism , Computational Biology/trends , Databases, Protein , Humans , Information Storage and Retrieval/methods , Internet , Major Histocompatibility Complex , Peptides/chemistry , Proteins/chemistry , Software
3.
PLoS One ; 4(9): e6948, 2009 Sep 14.
Article in English | MEDLINE | ID: mdl-19774228

ABSTRACT

BACKGROUND: A significant fraction of the more than 18 million scientific articles currently indexed in the PubMed database are related to immune responses to various agents, including infectious microbes, autoantigens, allergens, transplants, cancer antigens and others. The Immune Epitope Database (IEDB) is an online repository that catalogs immune epitope reactivity data derived from articles listed in the National Library of Medicine PubMed database. The IEDB is maintained and continually updated by monitoring PubMed for new, potentially relevant references. METHODOLOGY: Herein we detail the classification of all epitope-specific literature in over 100 different immunological domains representing Infectious Diseases and Microbes, Autoimmunity, Allergy, Transplantation and Cancer. The relative number of references in each category reflects past and present areas of research on immune reactivities. In addition to describing the overall landscape of data distribution, this particular characterization of the epitope reference data also allows for the exploration of possible correlations with global disease morbidity and mortality data. CONCLUSIONS/SIGNIFICANCE: While in most cases diseases associated with high morbidity and mortality rates were amongst the most studied, a number of high impact diseases such as dengue, Schistosoma, HSV-2, B. pertussis and Chlamydia trachoma, were found to have very little coverage. The data analyzed in this fashion represents the first estimate of how reported immunological data corresponds to disease-related morbidity and mortality, and confirms significant discrepancies in the overall research foci versus disease burden, thus identifying important gaps to be pursued by future research. These findings may also provide a justification for redirecting a portion of research funds into some of the underfunded, critical disease areas.


Subject(s)
Epitopes/chemistry , Immune System , Allergens/chemistry , Animals , Antigens, Neoplasm/chemistry , Chlamydia/metabolism , Communicable Diseases/metabolism , Computational Biology/methods , Databases, Factual , Humans , Information Storage and Retrieval , Natural Language Processing , Neoplasms/metabolism , PubMed
SELECTION OF CITATIONS
SEARCH DETAIL
...