Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Nano Lett ; 23(22): 10110-10117, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37934929

ABSTRACT

The long-lived electronic spin of the nitrogen-vacancy (NV) center in diamonds is a promising quantum sensor for detecting nanoscopic magnetic and electric fields in various environments. However, the poor signal-to-noise ratio (SNR) of prevalent optical spin-readout techniques presents a critical challenge in improving measurement sensitivity. Here, we address this limitation by coupling individual NVs to optimized diamond nanopillars, thereby enhancing the collection efficiency of fluorescence. Guided by near-field optical simulations, we predict improved performance for tall (≥5 µm) pillars with tapered sidewalls. This is subsequently verified by fabricating and characterizing a representative set of structures using a newly developed nanofabrication process. We observe increased SNR for optimized devices, owing to improved emission collimation and directionality. Promisingly, these devices are compatible with low-numerical-aperture collection optics and a reduced tip radius, reducing experimental overhead and facilitating improved spatial resolution for scanning applications.

2.
Nano Lett ; 23(18): 8406-8410, 2023 09 27.
Article in English | MEDLINE | ID: mdl-37676737

ABSTRACT

Diamond-based T1 relaxometry is a new technique that allows nanoscale magnetic resonance measurements. Here we present its first application in patient samples. More specifically, we demonstrate that relaxometry can determine the free radical load in samples from arthritis patients. We found that we can clearly differentiate between osteoarthritis and rheumatoid arthritis patients in both the synovial fluid itself and cells derived from it. Furthermore, we tested how synovial fluid and its cells respond to piroxicam, a common nonsteroidal anti-inflammatory drug (NSAID). It is known that this drug leads to a reduction in reactive oxygen species production in fibroblast-like synoviocytes (FLS). Here, we investigated the formation of free radicals specifically. While FLS from osteoarthritis patients showed a drastic decrease in the free radical load, cells from rheumatoid arthritis retained a similar radical load after treatment. This offers a possible explanation for why piroxicam is more beneficial for patients with osteoarthritis than those with rheumatoid arthritis.


Subject(s)
Arthritis, Rheumatoid , Osteoarthritis , Humans , Synovial Fluid , Synovial Membrane/pathology , Piroxicam/therapeutic use , Cells, Cultured , Arthritis, Rheumatoid/diagnostic imaging , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/pathology , Osteoarthritis/diagnostic imaging , Osteoarthritis/drug therapy , Osteoarthritis/pathology , Fibroblasts/pathology
3.
ACS Sens ; 8(4): 1667-1675, 2023 04 28.
Article in English | MEDLINE | ID: mdl-37043367

ABSTRACT

We present an alternative to conventional Electron Paramagnetic Resonance (EPR) spectroscopy equipment. Avoiding the use of bulky magnets and magnetron equipment, we use the photoluminescence of an ensemble of Nitrogen-Vacancy centers at the surface of a diamond. Monitoring their relaxation time (or T1), we detected their cross-relaxation with a compound of interest. In addition, the EPR spectra are encoded through a localized magnetic field gradient. While recording previous data took 12 min per data point with individual NV centers, we were able to reconstruct a full spectrum at once in 3 s, over a range from 3 to 11 G. In terms of sensitivity, only 0.5 µL of a 1 µM hexaaquacopper(II) ion solution was necessary.


Subject(s)
Diamond , Magnets , Diamond/chemistry , Magnetic Resonance Spectroscopy/methods , Electron Spin Resonance Spectroscopy/methods , Magnetic Fields
4.
Redox Biol ; 52: 102279, 2022 06.
Article in English | MEDLINE | ID: mdl-35349928

ABSTRACT

Although viruses are known to modify the free radical concentration in infected cells, the exact location and concentrations of such changes remain unknown. Although this information is important to understand the virus pathogenesis and design better anti-viral drugs or vaccines, obtaining it with the conventional free radical/ROS detection techniques is impossible. Here, we elucidate the utility of diamond magnetometry for studying the free radical response of baby hamster kidney-21 cells upon Semliki Forest virus infection. Specifically, we optically probe the alterations in free radical concentration near infectious viruses via measuring the spin-lattice relaxation (T1) of NV defect ensembles embedded in intracellular nanodiamonds. We performed measurements both at random locations as well as close to the virus entry by conjugating viruses to nanodiamond sensors. We observed alterations of T1, which represent the intracellular free radical concentration during the viral replication process. Moreover, relaxometry is also used to monitor real-time free radical variation during the early infectious process.


Subject(s)
Nanodiamonds , Virus Diseases , Diamond , Free Radicals , Humans
5.
Nano Lett ; 22(4): 1818-1825, 2022 02 23.
Article in English | MEDLINE | ID: mdl-34929080

ABSTRACT

Free radicals are crucial indicators for stress and appear in all kinds of pathogenic conditions, including cancer, cardiovascular diseases, and infection. However, they are difficult to detect due to their reactivity and low abundance. We use relaxometry for the detection of radicals with subcellular resolution. This method is based on a fluorescent defect in a diamond, which changes its optical properties on the basis of the magnetic surroundings. This technique allows nanoscale MRI with unprecedented sensitivity and spatial resolution. Recently, this technique was used inside living cells from a cell line. Cell lines differ in terms of endocytic capability and radical production from primary cells derived from patients. Here we provide the first measurements of phagocytic radical production by the NADPH oxidase (NOX2) in primary dendritic cells from healthy donors. The radical production of these cells differs greatly between donors. We investigated the cell response to stimulation or inhibition.


Subject(s)
Nanodiamonds , Dendritic Cells , Diamond , Free Radicals , Humans , Magnetics , Nanodiamonds/chemistry
6.
ACS Sens ; 6(12): 4349-4359, 2021 12 24.
Article in English | MEDLINE | ID: mdl-34797983

ABSTRACT

Free-radical generation is suspected to play a key role in cardiovascular diseases. Another crucial factor is shear stress. Human umbilical vein endothelial cells (HUVECS), which form the lining of blood vessels, require a physiological shear stress to activate many vasoactive factors. These are needed for maintaining vascular cell functions such as nonthrombogenicity, regulation of blood flow, and vascular tone. Additionally, blood clots form at regions of high shear stress within a blood vessel. Here, we use a new method called diamond magnetometry which allows us to measure the dynamics of free-radical generation in real time under shear stress. This quantum sensing technique allows free-radical detection with nanoscale resolution at the single-cell level. We investigate radical formation in HUVECs in a microfluidic environment under different flow conditions typically found in veins and arteries. Here, we looked into free-radical formation before, during, and after flow. We found that the free-radical production varied depending on the flow conditions. To confirm the magnetometry results and to differentiate between radicals, we performed conventional fluorescent reactive oxygen species (ROS) assays specific for superoxide, nitric oxide, and overall ROS.


Subject(s)
Nanodiamonds , Human Umbilical Vein Endothelial Cells , Humans , Nitric Oxide , Reactive Oxygen Species , Stress, Mechanical
7.
Article in English | MEDLINE | ID: mdl-32793585

ABSTRACT

While the microenvironment is known to alter the cellular behavior in terms of metabolism, growth and the degree of endoplasmic reticulum stress, its influence on the nanoparticle uptake is not yet investigated. Specifically, it is not clear if the cells cultured in a microenvironment ingest different amounts of nanoparticles than cells cultured in a macroenvironment (for example a petri dish). To answer this question, here we used J774 murine macrophages and fluorescent nanodiamonds (FND) as a model system to systematically compare the uptake efficiency of cells cultured in a petri dish and in a microfluidic channel. Specifically, equal numbers of cells were cultured in two devices followed by the FND incubation. Then cells were fixed, stained and imaged to quantify the FND uptake. We show that the FND uptake in the cells cultured in petri dishes is significantly higher than the uptake in a microfluidic chip where the alteration in CO2 environment, the cell culture medium pH and the surface area to volume ratio seem to be the underlying causes leading to this observed difference.

8.
Mater Sci Eng C Mater Biol Appl ; 112: 110930, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32409078

ABSTRACT

Fluorescent nanodiamonds are widely used as abrasives, optical or magnetic labels, in drug delivery or nanoscale sensing. They are considered very biocompatible in mammalian cells. However, in bacteria the situation looks different and results are highly controversial. This article presents a short review of the published literature and a systematic experimental study of different strains, nanoparticle sizes and surface chemistries. Most notably, particle aggregation behaviour and bacterial clumping are taken into consideration to explain reduced colony counts, which can be wrongly interpreted as a bactericidal effect. The experiments show no mechanism can be linked to a specific material property, but prove that aggregation and bacteriostatic effect of nanodiamond attachment play a significant role in the reported results.


Subject(s)
Anti-Bacterial Agents/chemistry , Nanodiamonds/chemistry , Anti-Bacterial Agents/pharmacology , Drug Carriers/chemistry , Escherichia coli/drug effects , Microbial Sensitivity Tests , Particle Size , Staphylococcus aureus/drug effects , Staphylococcus epidermidis/drug effects , Surface Properties
9.
Acc Chem Res ; 52(7): 1739-1749, 2019 07 16.
Article in English | MEDLINE | ID: mdl-31187980

ABSTRACT

Optical probes that can be used to measure certain quantities with subcellular resolution give us access to a new level of information at which physics, chemistry, life sciences, and medicine become strongly intertwined. The emergence of these new technologies is owed to great advances in the physical sciences. However, evaluating and improving these methods to new standards requires a joint effort with life sciences and clinical practice. In this Account, we give an overview of the probes that have been developed for measuring a few highly relevant parameters at the subcellular scale: temperature, pH, oxygen, free radicals, inorganic ions, genetic material, and biomarkers. Luminescent probes are available in many varieties, which can be used for measuring temperature, pH, and oxygen. Since they are influenced by virtually any metabolic process in the healthy or diseased cell, these quantities are extremely useful to understand intracellular processes. Probes for them can roughly be divided into molecular dyes with a parameter dependent fluorescence or phosphorescence and nanoparticle platforms. Nanoparticle probes can provide enhanced photostability, measurement quality, and potential for multiple functionalities. Embedding into coatings can improve biocompatibility or prevent nonspecific interactions between the probe and the cellular environment. These qualities need to be matched however with good uptake properties, colloidal properties and eventually intracellular targeting to optimize their practical applicability. Inorganic ions constitute a broad class of compounds or elements, some of which play specific roles in signaling, while others are toxic. Their detection is often difficult due to the cross-talk with similar ions, as well as other parameters. The detection of free radicals, DNA, and biomarkers at extremely low levels has significant potential for biomedical applications. Their presence is linked more directly to physiological and clinical manifestations. Since existing methods for free radical detection are generally poor in sensitivity and spatiotemporal resolution, new reliable methods that are generally applicable can contribute greatly to advancing this topic in biology. Optical methods that detect DNA or RNA and protein biomarkers exist for intracellular applications, but are mostly relevant for the development of rapid point-of-care sample testing. To elucidate the inner workings of cells, focused multidisciplinary research is required to define the validity and limitations of a nanoparticle probe, in both physical and biological terms. Multifunctional platforms and those that are easily made compatible with conventional research equipment have an edge over other techniques in growing the body of research evidencing their versatility.


Subject(s)
Fluorescent Dyes/chemistry , Nanostructures/chemistry , Animals , Biomarkers/analysis , DNA/analysis , Free Radicals/analysis , Humans , Hydrogen-Ion Concentration , Oxygen/analysis , RNA/analysis , Temperature
10.
Adv Sci (Weinh) ; 6(11): 1900019, 2019 Jun 05.
Article in English | MEDLINE | ID: mdl-31179214

ABSTRACT

Slippery lubricant-infused surfaces allow easy removal of liquid droplets on surfaces. They consist of textured or porous substrates infiltrated with a chemically compatible lubricant. Capillary forces help to keep the lubricant in place. Slippery surfaces hold promising prospects in applications including drag reduction in pipes or food packages, anticorrosion, anti-biofouling, or anti-icing. However, a critical drawback is that shear forces induced by flow lead to depletion of the lubricant. In this work, a way to overcome the shear-induced lubricant depletion by replenishing the lubricant from the flow of emulsions is presented. The addition of small amounts of positively charged surfactant reduces the charge repulsion between the negatively charged oil droplets contained in the emulsion. Attachment and coalescence of oil droplets from the oil-in-water emulsion at the substrate surface fills the structure with the lubricant. Flow-induced lubrication of textured surfaces can be generalized to a broad range of lubricant-solid combinations using minimal amounts of oil.

11.
Anal Chem ; 90(22): 13506-13513, 2018 11 20.
Article in English | MEDLINE | ID: mdl-30345733

ABSTRACT

One of the theories aiming to explain cellular aging is the free radical theory of aging, which describes the possible role of increased production and accumulation of free radicals. Fluorescent nanodiamonds (FNDs) are proposed to provide a tool to detect these radicals, as they function as magnetic sensors that change their optical properties depending on their magnetic surrounding. Therefore, they could enable the study of aging at a molecular level and unravel the exact role of free radicals in this process. In this study, important steps toward this goal are made. FNDs are introduced in chronologically aging yeast cells. Furthermore, the behavior of FNDs in these aging cells is studied to demonstrate the potency of using FNDs in the search for causes of cellular aging.


Subject(s)
Nanodiamonds/chemistry , Saccharomyces cerevisiae/physiology , Fluorescence , Saccharomyces cerevisiae/metabolism , Time Factors
12.
Bioinspir Biomim ; 11(5): 054001, 2016 10 03.
Article in English | MEDLINE | ID: mdl-27694711

ABSTRACT

Many varieties of the cabbage family have leaves covered with superhydrophobic epicuticular wax, which provides them with self-cleaning characteristics. Since the wax also lowers insect adhesion, rinsing of the leaves with water should be an effective way of removing the insects. Conversely, we report that superhydrophobicity of tuscan kale increases resistance of aphids to hydrodynamic removal. The exterior surface of the insects is also superhydrophobic and acts as an extension of the leaf's surface. As a result even at moderate impact velocities impinging water drops cannot penetrate under the pests. Consequently, liquid impact aids the insect's adhesion by increasing the normal compressive forces they experience. We show that on a hydrophilic arugula leaf this mechanism is absent, and aphids can be easily washed off with water, as it is able to penetrate underneath them. As for removal of aphids from Tuscan kale, we show that lower surface tension liquids, such as oils and soapy water are more effective, because they are able to wet both the plant and insect surfaces. We also show that aerodynamic removal of aphids consisting of simply exposing the invaded leaf to an air flow is most effective.


Subject(s)
Aphids , Brassica/parasitology , Hydrophobic and Hydrophilic Interactions , Animals , Water
13.
Langmuir ; 32(18): 4681-7, 2016 05 10.
Article in English | MEDLINE | ID: mdl-27062909

ABSTRACT

Insects of the order Embioptera, known as embiopterans, embiids, or webspinners, weave silk fibers together into sheets to make shelters called galleries. In this study, we show that silk galleries produced by the embiopteran Antipaluria urichi exhibit a highly hydrophobic wetting state with high water adhesion macroscopically equivalent to the rose petal effect. Specifically, the silk sheets have advancing contact angles above 150°, but receding contact angle approaching 0°. The silk sheets consist of layered fiber bundles with single strands spaced by microscale gaps. Scanning and transmission electron microscopy (SEM, TEM) images of silk treated with organic solvent and gas chromatography mass spectrometry (GC-MS) of the organic extract support the presence of a lipid outer layer on the silk fibers. We use cryogenic SEM to demonstrate that water drops reside on only the first layer of the silk fibers. The area fraction of this sparse outer silk layers is 0.1 to 0.3, which according to the Cassie-Baxter equation yields an effective static contact angle of ∼130° even for a mildly hydrophobic lipid coating. Using high magnification optical imaging of the three phase contact line of a water droplet receding from the silk sheet, we show that the high adhesion of the drop stems from water pinning along bundles of multiple silk fibers. The bundles likely form when the drop contact line is pinned on individual fibers and pulls them together as it recedes. The dynamic reorganization of the silk sheets during the droplet movement leads to formation of "super-pinning sites" that give embiopteran silk one of the strongest adhesions to water of any natural hydrophobic surface.


Subject(s)
Nanofibers/chemistry , Neoptera , Silk/chemistry , Wettability , Animals , Mechanical Phenomena , Water/chemistry
14.
Langmuir ; 31(51): 13743-52, 2015 Dec 29.
Article in English | MEDLINE | ID: mdl-26651017

ABSTRACT

The formation of frost and ice can have negative impacts on travel and a variety of industrial processes and is typically addressed by dispensing antifreeze substances such as salts and glycols. Despite the popularity of this anti-icing approach, some of the intricate underlying physical mechanisms are just being unraveled. For example, recent studies have shown that in addition to suppressing ice formation within its own volume, an individual salt saturated water microdroplet forms a region of inhibited condensation and condensation frosting (RIC) in its surrounding area. This occurs because salt saturated water, like most antifreeze substances, is hygroscopic and has water vapor pressure at its surface lower than water saturation pressure at the substrate. Here, we demonstrate that for macroscopic drops of propylene glycol and salt saturated water, the absolute RIC size can remain essentially unchanged for several hours. Utilizing this observation, we demonstrate that frost formation can be completely inhibited in-between microscopic and macroscopic arrays of propylene glycol and salt saturated water drops with spacing (S) smaller than twice the radius of the RIC (δ). Furthermore, by characterizing condensation frosting dynamics around various hygroscopic drop arrays, we demonstrate that they can delay complete frosting over of the samples 1.6 to 10 times longer than films of the liquids with equivalent volume. The significant delay in onset of ice nucleation achieved by dispensing propylene glycol in drops rather than in films is likely due to uniform dilution of the drops driven by thermocapillary flow. This transport mode is absent in the films, leading to faster dilution, and with that facilitated homogeneous nucleation, near the liquid-air interface.

15.
ACS Appl Mater Interfaces ; 7(7): 4224-32, 2015 Feb 25.
Article in English | MEDLINE | ID: mdl-25633081

ABSTRACT

The use of personal protective gear made from omniphobic materials that easily shed drops of all sizes could provide enhanced protection from direct exposure to most liquid-phase biological and chemical hazards and facilitate the postexposure decontamination of the gear. In recent literature, lubricated nanostructured fabrics are seen as attractive candidates for personal protective gear due to their omniphobic and self-healing characteristics. However, the ability of these lubricated fabrics to shed low surface tension liquids after physical contact with other objects in the surrounding, which is critical in demanding healthcare and military field operations, has not been investigated. In this work, we investigate the depletion of oil from lubricated fabrics in contact with highly absorbing porous media and the resulting changes in the wetting characteristics of the fabrics by representative low and high surface tension liquids. In particular, we quantify the loss of the lubricant and the dynamic contact angles of water and ethanol on lubricated fabrics upon repeated pressurized contact with highly absorbent cellulose-fiber wipes at different time intervals. We demonstrate that, in contrast to hydrophobic nanoparticle coated microfibers, fabrics encapsulated within a polymer that swells with the lubricant retain the majority of the oil and are capable of repelling high as well as low surface tension liquids even upon multiple contacts with the highly absorbing wipes. The fabric supported lubricant-swollen polymeric films introduced here, therefore, could provide durable and easy to decontaminate protection against hazardous biological and chemical liquids.


Subject(s)
Lubricants/chemistry , Polymers/chemistry , Textiles/analysis , Hydrophobic and Hydrophilic Interactions , Materials Testing , Oils/chemistry , Protective Clothing
16.
Langmuir ; 30(23): 6867-77, 2014 Jun 17.
Article in English | MEDLINE | ID: mdl-24846542

ABSTRACT

Gallium-based liquid metals are of interest for a variety of applications including flexible electronics, soft robotics, and biomedical devices. Still, nano- to microscale device fabrication with these materials is challenging because, despite having surface tension 10 times higher than water, they strongly adhere to a majority of substrates. This unusually high adhesion is attributed to the formation of a thin oxide shell; however, its role in the adhesion process has not yet been established. In this work, we demonstrate that, dependent on dynamics of formation and resulting morphology of the liquid metal-substrate interface, GaInSn adhesion can occur in two modes. The first mode occurs when the oxide shell is not ruptured as it makes contact with the substrate. Because of the nanoscale topology of the oxide surface, this mode results in minimal adhesion between the liquid metal and most solids, regardless of substrate's surface energy or texture. In the second mode, the formation of the GaInSn-substrate interface involves rupturing of the original oxide skin and formation of a composite interface that includes contact between the substrate and pieces of old oxide, bare liquid metal, and new oxide. We demonstrate that in this latter mode GaInSn adhesion is dominated by the intimate contact between new oxide and substrate. We also show that by varying the pinned contact line length using varied degrees of surface texturing, the adhesion of GaInSn in this mode can be either decreased or increased. Lastly, we demonstrate how these two adhesion modes limit microcontact printing of GaInSn patterns but can be exploited to repeatedly print individual sub-200 nm liquid metal drops.

SELECTION OF CITATIONS
SEARCH DETAIL
...