Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Arterioscler Thromb Vasc Biol ; 42(9): 1186-1197, 2022 09.
Article in English | MEDLINE | ID: mdl-35861070

ABSTRACT

BACKGROUND: Experimental studies have shown that the complement activating enzyme MASP-2 (mannose-binding lectin associated serine protease 2) exhibits a thrombin-like activity and that inhibition of MASP-2 protects against thrombosis. In this study, we investigated whether plasma MASP-2 levels were associated with risk of future venous thromboembolism (VTE) and whether genetic variants linked to MASP-2 levels were associated with VTE risk. METHODS: We conducted a population-based nested case-control study involving 410 VTE patients and 842 age- and sex-matched controls derived from the Norwegian Tromsø Study. Logistic regression was used to estimate odds ratios (ORs) of VTE across MASP-2 quartiles. Whole-exome sequencing and protein quantitative trait loci analyses were performed to assess genetic variants associated with MASP-2 levels. A 2-sample Mendelian randomization study, also including data from the INVENT consortium (International Network of Venous Thrombosis), was performed to assess causality. RESULTS: Subjects with plasma MASP-2 in the highest quartile had a 48% higher OR of VTE (OR, 1.48 [95% CI, 1.06-2.06]) and 83% higher OR of deep vein thrombosis (OR, 1.83 [95% CI, 1.23-2.73]) compared with those with MASP-2 levels in the lowest quartile. The protein quantitative trait loci analysis revealed that 3 previously described gene variants, rs12711521 (minor allele frequency, 0.153), rs72550870 (minor allele frequency, 0.045; missense variants in the MASP2 gene), and rs2275527 (minor allele frequency, 0.220; exon variant in the adjacent MTOR gene) explained 39% of the variation of MASP-2 plasma concentration. The OR of VTE per 1 SD increase in genetically predicted MASP-2 was 1.03 ([95% CI, 1.01-1.05] P=0.0011). CONCLUSIONS: Our findings suggest that high plasma MASP-2 levels are causally associated with risk of future VTE.


Subject(s)
Mannose-Binding Protein-Associated Serine Proteases , Venous Thromboembolism , Venous Thrombosis , Case-Control Studies , Complement C2 , Humans , Mannose-Binding Protein-Associated Serine Proteases/genetics , Venous Thromboembolism/diagnosis , Venous Thromboembolism/epidemiology , Venous Thromboembolism/genetics , Venous Thrombosis/epidemiology , Venous Thrombosis/genetics
2.
Biomedicines ; 10(2)2022 Feb 09.
Article in English | MEDLINE | ID: mdl-35203622

ABSTRACT

Inflammatory bowel disease (IBD) is characterized by chronic inflammation in the gastrointestinal tract, resulting in severe symptoms. At the moment, the goal of medical treatments is to reduce inflammation. IBD is treated with systemic anti-inflammatory compounds, but they have serious side effects. The treatment that is most efficient and causes the fewest side effects would be the delivery of the drugs on the disease site. This study aimed to investigate the suitability of sphingomyelin (SM) containing liposomes to specifically target areas of inflammation in dextran sulfate sodium-induced murine colitis. Sphingomyelin is a substrate to the sphingomyelinase enzyme, which is only present outside cells in cell stress, like inflammation. When sphingomyelin consisting of liposomes is predisposed to the enzyme, it causes the weakening of the membrane structure. We demonstrated that SM-liposomes are efficiently taken up in intestinal macrophages, indicating their delivery potential. Furthermore, our studies showed that sphingomyelinase activity and release are increased in a dextran sulfate sodium-induced IBD mouse model. The enzyme appearance in IBD disease was also traced in intestine samples of the dextran sulfate sodium-treated mice and human tissue samples. The results from the IBD diseased animals, treated with fluorescently labeled SM-liposomes, demonstrated that the liposomes were taken up preferentially in the inflamed colon. This uptake efficiency correlated with sphingomyelinase activity.

3.
Curr Pharm Des ; 26(31): 3840-3846, 2020.
Article in English | MEDLINE | ID: mdl-32718282

ABSTRACT

BACKGROUND: The purpose of our study was to find a novel targeted imaging and drug delivery vehicle for inflammatory bowel disease (IBD). IBD is a common and troublesome disease that still lacks effective therapy and imaging options. As an attempt to improve the disease treatment, we tested αMSH for the targeting of nanoliposomes to IBD sites. αMSH, an endogenous tridecapeptide, binds to the melanocortin-1 receptor (MC1-R) and has anti-inflammatory and immunomodulating effects. MC1-R is found on macrophages, neutrophils and the renal tubule system. We formulated and tested a liposomal nanoparticle involving αMSH in order to achieve a specific targeting to the inflamed intestines. METHODS: NDP-αMSH peptide conjugated to Alexa Fluor™ 680 was linked to the liposomal membrane via NSuccinyl PE and additionally loaded into the lumen of the liposomes. Liposomes without the αMSH-conjugate and free NDP-αMSH were used as a control. The liposomes were also loaded with ICG to track them. The liposomes were tested in DSS treated mice, which had received DSS via drinking water order to develop a model IBD. Inflammation severity was assessed by the Disease Activity Index (DAI) score and ex vivo histological CD68 staining of samples taken from different parts of the intestine. The liposome targeting was analyzed by analyzing the ICG and ALEXA 680 fluorescence in the intestine compared to the biodistribution. RESULTS: NPD-αMSH was successfully labeled with Alexa and retained its biological activity. Liposomes were identified in expected regions in the inflamed bowel regions and in the kidneys, where MC1-R is abundant. In vivo liposome targeting correlated with the macrophage concentration at the site of the inflammation supporting the active targeting of the liposomes through αMSH. The liposomal αMSH was well tolerated by animals. CONCLUSION: This study opens up the possibility to further develop an αMSH targeted theranostic delivery to different clinically relevant applications in IBD inflammation but also opens possibilities for use in other inflammations like lung inflammation in Covid 19.


Subject(s)
Inflammatory Bowel Diseases/diagnostic imaging , Liposomes , Nanoparticles , Receptor, Melanocortin, Type 1/chemistry , alpha-MSH/chemistry , Animals , Fluorescent Dyes/chemistry , Mice , Tissue Distribution
4.
Curr Pharm Des ; 26(31): 3828-3833, 2020.
Article in English | MEDLINE | ID: mdl-32188378

ABSTRACT

BACKGROUND: Nanoparticle imaging and tracking the release of the loaded material from the nanoparticle system have attracted significant attention in recent years. If the release of the loaded molecules could be monitored reliably in vivo, it would speed up the development of drug delivery systems remarkably. METHODS: Here, we test a system that uses indocyanine green (ICG) as a fluorescent agent for studying release kinetics in vitro and in vivo from the lipid iron nanoparticle delivery system. The ICG spectral properties like its concentration dependence, sensitivity and the fluctuation of the absorption and emission wavelengths can be utilized for gathering information about the change of the ICG surrounding. RESULTS: We have found that the absorption, fluorescence, and photoacoustic spectra of ICG in lipid iron nanoparticles differ from the spectra of ICG in pure water and plasma. We followed the ICG containing liposomal nanoparticle uptake into squamous carcinoma cells (SCC) by fluorescence microscopy and the in vivo uptake into SCC tumors in an orthotopic xenograft nude mouse model under a surgical microscope. CONCLUSION: Absorption and emission properties of ICG in the different solvent environment, like in plasma and human serum albumin, differ from those in aqueous solution. Photoacoustic spectral imaging confirmed a peak shift towards longer wavelengths and an intensity increase of ICG when bound to the lipids. The SCC cells showed that the ICG containing liposomes bind to the cell surface but are not internalized in the SCC-9 cells after 60 minutes of incubation. We also showed here that ICG containing liposomal nanoparticles can be traced under a surgical camera in vivo in orthotopic SCC xenografts in mice.


Subject(s)
Indocyanine Green , Nanoparticles , Animals , Liposomes , Mice , Optical Imaging , Spectrum Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...