Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 30(42): 96114-96124, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37566329

ABSTRACT

In this work, a simple and environmentally friendly approach has been followed to synthesize amine-functionalized reduced graphene oxide (RGO)-supported silver nanoparticle (AgNPs) having superior catalytic efficiency towards the reduction of organic pollutants. RGO/AgNPs nanohybrid was synthesized by a one-pot hydrothermal reduction of silver nitrate in the presence of amino-propyl trimethoxy silane (APTMS)-functionalized graphene oxide (GO) nanosheets. The structural and morphological characterization of as-synthesized RGO/AgNPs nanohybrid was done by using XRD, SEM, TEM, FT-IR, and Raman spectroscopy techniques. APTMS plays an important role in controlling the size of anchored AgNPs on the nanohybrid in the present study. The -NH2 groups on the surface of APTMS-modified GO function as effective and well-organized nucleation centers facilitating uniform growth of discrete and smaller-sized spherical AgNPs on the surface of RGO nanosheets. In the absence of APTMS, the nanohybrid comprised of bigger-sized AgNPs with few hundred of nanometers in dimension. The catalytic efficiency of RGO/AgNPs nanohybrid was evaluated for the reduction of two model organic pollutants: 4-nitrophenol (4-NP) and methylene blue (MB). Due to the synergistic effects of RGO, APTMS, and Ag components, RGO/AgNPs nanohybrid developed in the present study exhibited superior catalytic activity towards the reduction of 4-NP and MB in comparison with previously reported graphene/graphene oxide/reduced graphene oxide-supported AgNPs catalysts. The catalytic reduction of 4-NP and MB followed pseudo-unimolecular kinetics and the rate constants were found to be 18.83 × 10-3 s-1 and 131.5 ×10-3 s-1 respectively for 4-NP and MB. Furthermore, RGO/AgNPs nanohybrid showed admirable recyclability with negligible loss in its activity until five recycle runs. The superior catalytic activity, favorable kinetic parameters, and sustained catalytic efficiency after recycling make RGO/AgNPs nanohybrid a promising catalyst for the reduction of organic pollutants in environmental remediation.


Subject(s)
Graphite , Metal Nanoparticles , Graphite/chemistry , Metal Nanoparticles/chemistry , Amines , Spectroscopy, Fourier Transform Infrared , Silver
2.
PLoS One ; 10(3): e0118987, 2015.
Article in English | MEDLINE | ID: mdl-25760649

ABSTRACT

To address possible cell-to-cell heterogeneity in growth dynamics of isogenic cell populations of Chlamydomonas reinhardtii, we developed a millifluidic drop-based device that not only allows the analysis of populations grown from single cells over periods of a week, but is also able to sort and collect drops of interest, containing viable and healthy cells, which can be used for further experimentation. In this study, we used isogenic algal cells that were first synchronized in mixotrophic growth conditions. We show that these synchronized cells, when placed in droplets and kept in mixotrophic growth conditions, exhibit mostly homogeneous growth statistics, but with two distinct subpopulations: a major population with a short doubling-time (fast-growers) and a significant subpopulation of slowly dividing cells (slow-growers). These observations suggest that algal cells from an isogenic population may be present in either of two states, a state of restricted division and a state of active division. When isogenic cells were allowed to propagate for about 1000 generations on solid agar plates, they displayed an increased heterogeneity in their growth dynamics. Although we could still identify the original populations of slow- and fast-growers, drops inoculated with a single progenitor cell now displayed a wider diversity of doubling-times. Moreover, populations dividing with the same growth-rate often reached different cell numbers in stationary phase, suggesting that the progenitor cells differed in the number of cell divisions they could undertake. We discuss possible explanations for these cell-to-cell heterogeneities in growth dynamics, such as mutations, differential aging or stochastic variations in metabolites and macromolecules yielding molecular switches, in the light of single-cell heterogeneities that have been reported among isogenic populations of other eu- and prokaryotes.


Subject(s)
Cell Division , Chlamydomonas reinhardtii/cytology , Cell Culture Techniques/instrumentation , Cell Proliferation , Cells, Cultured , Chlamydomonas reinhardtii/growth & development , Lab-On-A-Chip Devices
SELECTION OF CITATIONS
SEARCH DETAIL
...