Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Hypertension ; 67(5): 959-69, 2016 May.
Article in English | MEDLINE | ID: mdl-26975709

ABSTRACT

BPH/2J mice are a genetic model of hypertension associated with an overactive sympathetic nervous system. Orexin is a neuropeptide which influences sympathetic activity and blood pressure. Orexin precursor mRNA expression is greater in hypothalamic tissue of BPH/2J compared with normotensive BPN/3J mice. To determine whether enhanced orexinergic signaling contributes to the hypertension, BPH/2J and BPN/3J mice were preimplanted with radiotelemetry probes to compare blood pressure 1 hour before and 5 hours after administration of almorexant, an orexin receptor antagonist. Mid frequency mean arterial pressure power and the depressor response to ganglion blockade were also used as indicators of sympathetic nervous system activity. Administration of almorexant at 100 (IP) and 300 mg/kg (oral) in BPH/2J mice during the dark-active period (2 hours after lights off) markedly reduced blood pressure (-16.1 ± 1.6 and -11.0 ± 1.1 mm Hg, respectively;P<0.001 compared with vehicle). However, when almorexant (100 mg/kg, IP) was administered during the light-inactive period (5 hours before lights off) no reduction from baseline was observed (P=0.64). The same dose of almorexant in BPN/3J mice had no effect on blood pressure during the dark (P=0.79) or light periods (P=0.24). Almorexant attenuated the depressor response to ganglion blockade (P=0.018) and reduced the mid frequency mean arterial pressure power in BPH/2J mice (P<0.001), but not BPN/3J mice (P=0.70). Immunohistochemical labeling revealed that BPH/2J mice have 29% more orexin neurons than BPN/3J mice which are preferentially located in the lateral hypothalamus. The results suggest that enhanced orexinergic signaling contributes to sympathetic overactivity and hypertension during the dark period in BPH/2J mice.


Subject(s)
Acetamides/pharmacology , Hypertension/drug therapy , Hypertension/physiopathology , Isoquinolines/pharmacology , Orexins/metabolism , Sympathetic Nervous System/physiopathology , Administration, Oral , Animals , Biomarkers/blood , Blood Pressure Determination/methods , Disease Models, Animal , Dose-Response Relationship, Drug , Injections, Intraperitoneal , Male , Mice , Mice, Transgenic , Motor Activity/drug effects , Orexins/drug effects , Pressoreceptors/drug effects , Pressoreceptors/physiology , Random Allocation , Reference Values , Renin-Angiotensin System/drug effects , Renin-Angiotensin System/physiology , Treatment Outcome
2.
Exp Physiol ; 100(4): 388-98, 2015 Apr 01.
Article in English | MEDLINE | ID: mdl-25640802

ABSTRACT

NEW FINDINGS: What is the central question of this study? Blockade of orexin receptors reduces blood pressure in spontaneously hypertensive rats (SHRs) but not in normotensive Wistar-Kyoto (WKY) rats, suggesting that upregulation of orexin signalling underlies the hypertensive phenotype of the SHR. However, it is not known what causes this upregulation. What is the main finding and its importance? Using orexin immunolabelling, we show that SHRs have 20% more orexin neurons than normotensive WKY and Wistar rats in the medial hypothalamus, which is a good match to their blood pressure phenotype. In contrast, there is no such match for the orexin neurons of the lateral hypothalamus. Essential hypertension may be linked to an increase in orexin neurons in the medial hypothalamus. The neuropeptide orexin contributes to the regulation of blood pressure as part of its role in the control of arousal during wakefulness and motivated behaviour (including responses to psychological stress). Recent work shows that pharmacological blockade of orexin receptors reduces blood pressure in spontaneously hypertensive rats (SHRs) but not in normotensive Wistar-Kyoto (WKY) rats. It is not clear why orexin signalling is upregulated in the SHR, but one possibility is that these animals have more orexin neurons than their normotensive WKY and Wistar relatives. To test this possibility, SHRs, WKY and Wistar male rats (6-16 weeks old) were killed, perfused and their brains sectioned and immunolabelled for orexin A. Labelled neurons were plotted and counted in the six best labelled hemisections (120 µm apart) of each brain. There were significantly more orexin neurons (+20%) in the medial hypothalamus (medial to fornix) of SHRs compared with WKY and Wistar rats (126 ± 4 versus 106 ± 5 and 104 ± 5 per hemisection, respectively, P < 0.05), which matches well the blood pressure phenotypes. In contrast, counts in the lateral hypothalamus did not match the blood pressure phenotypes (69 ± 2 versus 50 ± 3 and 76 ± 4, respectively). The results support the idea that orexin signalling is upregulated in the SHR and suggest that this is due, at least in part, to a greater number of orexin neurons in the medial hypothalamus. These medial orexin neurons, which are also involved in hyperarousal and stress responses, may contribute to the development of essential hypertension.


Subject(s)
Blood Pressure , Hypertension/physiopathology , Hypothalamus/pathology , Hypothalamus/physiopathology , Neurons/metabolism , Neurons/pathology , Orexins/metabolism , Animals , Male , Rats , Rats, Inbred SHR , Rats, Inbred WKY
3.
Neuropharmacology ; 89: 146-56, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25239810

ABSTRACT

Orexin contributes to the expression of the cardiovascular and behavioural response of some forms of stress, including novelty stress. Thus, Almorexant, a dual receptor antagonist that blocks the two known orexin receptors, Ox1R and Ox2R, reduces these responses. However, it is not known if the reduction results from blockade of one receptor only or both. To answer this question, the selective Ox1R antagonist ACT335827 and the selective Ox2R antagonist EMPA were injected intragastrically (300 mg/kg) or intraperitoneally (30 and 100 mg/kg) either alone or as a cocktail and compared to Almorexant in rats exposed to novelty stress. Cardiovascular and locomotor responses were recorded by radio-telemetry. Triple immunolabelling was also conducted to establish the distribution of Ox1R and Ox2R in sympathetic preganglionic neurons and orexin neurons. Intraperitoneal injections of ACT335827 (100 mg/kg) reduced the pressor and tachycardic but not the locomotor response of novelty (by 32% and 48%, respectively). Intraperitoneal injections of EMPA (100 mg/kg) only reduced the pressor response (42%). However when given together, ACT335827 and EMPA reduced all 3 components (65%, 60% and 57% of the tachycardic, pressor and locomotor responses, respectively) as Almorexant (100 mg/kg) did (69%, 87% and 72%, respectively). Triple immunolabelling revealed that sympathetic preganglionic neurons were mainly Ox1R positive only while orexin neurons were both Ox1R and Ox2R positive. This study shows that orexin's contribution to the cardiovascular and locomotor components of the novelty stress response is not mediated by one receptor alone, but by both receptors and at different levels of the neuraxis.


Subject(s)
Blood Pressure/physiology , Heart Rate/physiology , Motor Activity/physiology , Orexin Receptors/physiology , Stress, Psychological , Aminopyridines/pharmacology , Animals , Blood Pressure/drug effects , Heart Rate/drug effects , Male , Motor Activity/drug effects , Orexin Receptor Antagonists , Random Allocation , Rats , Rats, Wistar , Stress, Psychological/psychology , Sulfonamides/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...