Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Microbiol Biotechnol ; 33(6): 771-779, 2023 Jun 28.
Article in English | MEDLINE | ID: mdl-36959178

ABSTRACT

Biofilms are a significant concern in the food industry. The utilization of plant-derived compounds to inactivate biofilms on food contact surfaces has not been widely reported. Also, the increasing negative perception of consumers against synthetic sanitizers has encouraged the hunt for natural compounds as alternatives. Therefore, in this study we evaluated the antimicrobial activities of ethanol extracts, acetone extracts, and essential oils (EOs) of seven culinary herbs against Salmonella enterica serotype Typhimurium and Listeria innocua using the broth microdilution assay. Among all tested extracts and EOs, the ethanol extract of Piper betle L. exhibited the most efficient antimicrobial activities. To evaluate the biofilm inactivation effect, S. Typhimurium and L. innocua biofilms on pitted and smooth stainless steel (SS) coupons were exposed to P. betle ethanol extract (12.5 mg/ml), sodium hypochlorite (NaClO; 200 ppm), hydrogen peroxide (HP; 1100 ppm), and benzalkonium chloride (BKC; 400 ppm) for 15 min. Results showed that, for the untreated controls, higher sessile cell counts were observed on pitted SS versus smooth SS coupons. Overall, biofilm inactivation efficacies of the tested sanitizers followed the trend of P. betle extract ≥ BKC > NaClO > HP. The surface condition of SS did not affect the biofilm inactivation effect of each tested sanitizer. The contact angle results revealed P. betle ethanol extract could increase the surface wettability of SS coupons. This research suggests P. betle extract might be utilized as an alternative sanitizer in food processing facilities.


Subject(s)
Anti-Infective Agents , Listeria monocytogenes , Piper betle , Stainless Steel/analysis , Stainless Steel/pharmacology , Food Microbiology , Biofilms , Ethanol/pharmacology , Salmonella typhimurium , Anti-Infective Agents/pharmacology , Colony Count, Microbial
2.
J Microbiol Biotechnol ; 31(3): 439-446, 2021 Mar 28.
Article in English | MEDLINE | ID: mdl-33526753

ABSTRACT

Quercus infectoria (nutgall) has been reported to possess antimicrobial activities against a wide range of pathogens. Nevertheless, the biofilm removal effect of nutgall extract has not been widely investigated. In this study, we therefore evaluated the effect of nutgall extract in combination with cetrimonium bromide (CTAB) against preformed biofilm of Salmonella Typhimurium on polypropylene (PP) and stainless steel (SS) coupons in comparison with other sanitizers. The minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) of nutgall extract and surfactants (CTAB and sodium dodecyl sulfate; SDS) were assessed. CTAB showed a more efficient antimicrobial activity than SDS and was selected to use in combination with nutgall extract for removing biofilm. To determine the biofilm removal efficacy, the PP and SS coupons were individually submerged in 2x MBC of nutgall extract (256 mg/ml) + 2x MBC of CTAB (2.5 mg/ml), nutgall extract alone (256 mg/ml), CTAB alone (2.5 mg/ml), distilled water, and 100 ppm sodium hypochlorite for 5, 15, and 30 min. The remaining sessile cells in biofilm were determined. Overall, the greatest biofilm removal efficacy was observed with nutgall extract + CTAB; the biofilm removal efficacy of sanitizers tended to increase with the exposure time. The SEM analysis demonstrated that S. Typhimurium biofilm on PP and SS coupons after exposure to nutgall extract + CTAB for 30 min displayed morphological alterations with wrinkles. This study suggests nutgall extract + CTAB may be an alternative to commonly used sanitizers to remove biofilm from food contact surfaces in the food industry and household.


Subject(s)
Biofilms/drug effects , Cetrimonium/pharmacology , Plant Extracts/pharmacology , Salmonella typhimurium/drug effects , Sodium Dodecyl Sulfate/pharmacology , Colony Count, Microbial , Decontamination/methods , Food Microbiology , Microbial Sensitivity Tests , Plant Tumors , Polypropylenes , Quercus/chemistry , Stainless Steel , Surface-Active Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...