Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 22881, 2021 11 24.
Article in English | MEDLINE | ID: mdl-34819550

ABSTRACT

The stunning sexual transformation commonly triggered by age, size or social context in some fishes is one of the best examples of phenotypic plasticity thus far described. To date our understanding of this process is dominated by studies on a handful of subtropical and tropical teleosts, often in wild settings. Here we have established the protogynous New Zealand spotty wrasse, Notolabrus celidotus, as a temperate model for the experimental investigation of sex change. Captive fish were induced to change sex using aromatase inhibition or manipulation of social groups. Complete female-to-male transition occurred over 60 days in both cases and time-series sampling was used to quantify changes in hormone production, gene expression and gonadal cellular anatomy. Early-stage decreases in plasma 17ß-estradiol (E2) concentrations or gonadal aromatase (cyp19a1a) expression were not detected in spotty wrasse, despite these being commonly associated with the onset of sex change in subtropical and tropical protogynous (female-to-male) hermaphrodites. In contrast, expression of the masculinising factor amh (anti-Müllerian hormone) increased during early sex change, implying a potential role as a proximate trigger for masculinisation. Collectively, these data provide a foundation for the spotty wrasse as a temperate teleost model to study sex change and cell fate in vertebrates.


Subject(s)
Fishes/physiology , Hermaphroditic Organisms/physiology , Sex Determination Processes , Animals , Anti-Mullerian Hormone/genetics , Anti-Mullerian Hormone/metabolism , Aromatase Inhibitors/pharmacology , Estradiol/blood , Female , Fish Proteins/genetics , Fish Proteins/metabolism , Fishes/blood , Fishes/genetics , Gene Expression Regulation , Gonads/physiology , Hermaphroditic Organisms/drug effects , Hermaphroditic Organisms/genetics , Hermaphroditic Organisms/metabolism , Male , Models, Animal , Phenotype , Sex Characteristics , Sex Determination Processes/drug effects , Social Behavior , Testosterone/analogs & derivatives , Testosterone/blood
2.
Gen Comp Endocrinol ; 279: 129-138, 2019 08 01.
Article in English | MEDLINE | ID: mdl-30796898

ABSTRACT

An inverse relation exists between the maturation stage at the start of the oceanic reproductive migration and the migration distance to the spawning grounds for the various eel species. The European eel Anguilla anguilla migrates up to 5-6000 km and leaves in a previtellogenic state. The shortfinned eel A. australis migrates 2-4000 km and leaves in an early vitellogenic state. In this study, we compared the early pubertal events in European silver eels with those in silver shortfinned eels to gain insights into the initiation of vitellogenesis. Immediately after being caught, yellow and silver eels of both species were measured and sampled for blood and tissues. Eye index (EI), gonadosomatic index (GSI) and hepatosomatic index (HSI) were calculated. Plasma 11-ketotestosterone (11-KT) and 17ß-estradiol (E2) levels were measured by radioimmunoassay. Pituitary, liver and ovaries were dissected for quantitative real-time PCR analyses (pituitary dopamine 2b receptor d2br, gonadotropin-releasing hormone receptors 1 and 2 gnrhr1 and gnrhr2, growth hormone gh and follicle-stimulating hormone-ß fshb; liver estrogen receptor 1 esr1; gonad follicle-stimulating hormone receptor fshr, androgen receptors α and ß ara and arb, vitellogenin receptor vtgr and P450 aromatase cyp19). Silver eels of both species showed a drop in pituitary gh expression, progressing gonadal development (GSI of ∼1.5 in European eels and ∼3.0 in shortfinned eels) and steroid level increases. In shortfinned eels, but not European eels, expression of fshb, gnrhr1 and gnrhr2, and d2br in the pituitary was up-regulated in the silver-stage as compared to yellow-stage females, as was expression of fshr, ara and arb in the ovaries. Expression of esr1 in European eels remained low while esr1 expression was up-regulated over 100-fold in silver shortfinned eels. The mechanistic model for anguillid vitellogenesis that we present suggests a first step that involves a drop in Gh and a second step that involves Fsh increase when switching in the life history trade-off from growth to reproduction. The drop in Gh is associated with gonadal development and plasma steroid increase but precedes brain-pituitary-gonad axis (BPG) activation. The Fsh increase marks BPG activation and increased sensitivity of the liver to estrogenic stimulation, but also an increase in D2br-mediated dopaminergic signaling to the pituitary.


Subject(s)
Anguilla/physiology , Models, Biological , Vitellogenesis , Anguilla/anatomy & histology , Anguilla/blood , Anguilla/genetics , Animals , Estradiol/blood , Female , Gene Expression Regulation , Liver/metabolism , Ovary/metabolism , Pituitary Gland/metabolism , Testosterone/analogs & derivatives , Testosterone/blood , Vitellogenesis/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...