Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 23(24)2022 Dec 17.
Article in English | MEDLINE | ID: mdl-36555782

ABSTRACT

Phellinus baumii, a fungus that grows on mulberry trees and is used in traditional Chinese medicine, exerts therapeutic effects against various diseases, including cancer. Polyphenols, generally considered to be antioxidants, have antitumor and proapoptotic effects. In this study, we identified the composition of Phellinus baumii polyphenol (PBP) and characterized its 17 chemical components by UPLC-ESI-QTOF-MS. Furthermore, to clarify the potential mechanism of PBP against Lung Cancer Cells, network pharmacology and experimental verification were combined. Molecular docking elucidated the binding conformation and mechanism of the primary active components (Osmundacetone and hispidin) to the core targets CASP3, PARP1 and TP53. In addition, potential molecular mechanisms of PBP predicted by network pharmacology analysis were validated in vitro. PBP significantly inhibited the human lung cancer A549 cells and showed typical apoptotic characteristics, without significant cytotoxicity to normal human embryonic kidney (HEK293) cells. Analysis using flow cytometry and western blot indicated that PBP caused apoptosis, cell cycle arrest, reactive oxygen species (ROS) accumulation, and mitochondrial membrane potential (MMP) depression in A549 cells to exercise its antitumor effects. These results reveal that PBP has great potential for use as an active ingredient for antitumor therapy.


Subject(s)
Lung Neoplasms , Polyphenols , Humans , Polyphenols/pharmacology , Polyphenols/chemistry , Molecular Docking Simulation , HEK293 Cells , Lung Neoplasms/drug therapy , A549 Cells , Apoptosis
2.
Biomed Res Int ; 2020: 5745048, 2020.
Article in English | MEDLINE | ID: mdl-32351998

ABSTRACT

In this study, the effects of Astragalus membranaceus oral solution on lifespan and learning and memory abilities of honey bees were evaluated. Two groups of bees were fed with sucrose syrup (50%) containing low dose (1.33%) and high dose (13.3%) of A. membranaceus oral solution, respectively. The proboscis extension response (PER) analysis was applied to examine the learning and memory capabilities of bees. Two genes related to memory formation in honey bees were determined by real-time PCR. High dose (13.3%) of A. membranaceus significantly decreased the mean lifespan of bees compared to the bees fed with low dose (1.33%) and control bees. No significant differences in lifespan of bees were found between low-dose-fed bees and control bees. The results of PER experiments showed apparent improvement in the memorizing ability of the high-dose group (in comparison with the control group). Moreover, the relative expression levels of Nmdar1 in the low-dose group and control group were significantly lower than those in the high-dose group. It is preliminarily concluded that A. membranaceus has an adverse effect on the mean lifespan of honey bees but might be helpful in strengthening memories.


Subject(s)
Astragalus propinquus/chemistry , Bees/physiology , Learning , Longevity , Memory , Animals
SELECTION OF CITATIONS
SEARCH DETAIL
...