Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Br J Ophthalmol ; 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37852741

ABSTRACT

BACKGROUND: Ultrasound imaging is suitable for detecting and diagnosing ophthalmic abnormalities. However, a shortage of experienced sonographers and ophthalmologists remains a problem. This study aims to develop a multibranch transformer network (MBT-Net) for the automated classification of multiple ophthalmic diseases using B-mode ultrasound images. METHODS: Ultrasound images with six clinically confirmed categories, including normal, retinal detachment, vitreous haemorrhage, intraocular tumour, posterior scleral staphyloma and other abnormalities, were used to develop and evaluate the MBT-Net. Images were derived from five different ultrasonic devices operated by different sonographers and divided into training set, validation set, internal testing set and temporal external testing set. Two senior ophthalmologists and two junior ophthalmologists were recruited to compare the model's performance. RESULTS: A total of 10 184 ultrasound images were collected. The MBT-Net got an accuracy of 87.80% (95% CI 86.26% to 89.18%) in the internal testing set, which was significantly higher than junior ophthalmologists (95% CI 67.37% to 79.16%; both p<0.05) and lower than senior ophthalmologists (95% CI 89.45% to 92.61%; both p<0.05). The micro-average area under the curve of the six-category classification was 0.98. With reference to comprehensive clinical diagnosis, the measurements of agreement were almost perfect in the MBT-Net (kappa=0.85, p<0.05). There was no significant difference in the accuracy of the MBT-Net across five ultrasonic devices (p=0.27). The MBT-Net got an accuracy of 82.21% (95% CI 78.45% to 85.44%) in the temporal external testing set. CONCLUSIONS: The MBT-Net showed high accuracy for screening and diagnosing multiple ophthalmic diseases using only ultrasound images across mutioperators and mutidevices.

2.
Cureus ; 15(6): e40895, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37492832

ABSTRACT

Objective The primary aim of this research was to address the limitations observed in the medical knowledge of prevalent large language models (LLMs) such as ChatGPT, by creating a specialized language model with enhanced accuracy in medical advice. Methods We achieved this by adapting and refining the large language model meta-AI (LLaMA) using a large dataset of 100,000 patient-doctor dialogues sourced from a widely used online medical consultation platform. These conversations were cleaned and anonymized to respect privacy concerns. In addition to the model refinement, we incorporated a self-directed information retrieval mechanism, allowing the model to access and utilize real-time information from online sources like Wikipedia and data from curated offline medical databases. Results The fine-tuning of the model with real-world patient-doctor interactions significantly improved the model's ability to understand patient needs and provide informed advice. By equipping the model with self-directed information retrieval from reliable online and offline sources, we observed substantial improvements in the accuracy of its responses. Conclusion Our proposed ChatDoctor, represents a significant advancement in medical LLMs, demonstrating a significant improvement in understanding patient inquiries and providing accurate advice. Given the high stakes and low error tolerance in the medical field, such enhancements in providing accurate and reliable information are not only beneficial but essential.

3.
IEEE J Biomed Health Inform ; 27(7): 3525-3536, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37126620

ABSTRACT

Precise and rapid categorization of images in the B-scan ultrasound modality is vital for diagnosing ocular diseases. Nevertheless, distinguishing various diseases in ultrasound still challenges experienced ophthalmologists. Thus a novel contrastive disentangled network (CDNet) is developed in this work, aiming to tackle the fine-grained image categorization (FGIC) challenges of ocular abnormalities in ultrasound images, including intraocular tumor (IOT), retinal detachment (RD), posterior scleral staphyloma (PSS), and vitreous hemorrhage (VH). Three essential components of CDNet are the weakly-supervised lesion localization module (WSLL), contrastive multi-zoom (CMZ) strategy, and hyperspherical contrastive disentangled loss (HCD-Loss), respectively. These components facilitate feature disentanglement for fine-grained recognition in both the input and output aspects. The proposed CDNet is validated on our ZJU Ocular Ultrasound Dataset (ZJUOUSD), consisting of 5213 samples. Furthermore, the generalization ability of CDNet is validated on two public and widely-used chest X-ray FGIC benchmarks. Quantitative and qualitative results demonstrate the efficacy of our proposed CDNet, which achieves state-of-the-art performance in the FGIC task.


Subject(s)
Face , Ophthalmologists , Humans , Benchmarking , Neuroimaging , Thorax
SELECTION OF CITATIONS
SEARCH DETAIL
...