Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Complement Med Ther ; 22(1): 321, 2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36464690

ABSTRACT

BACKGROUND: Diazinon (DZN), a widely used chemical herbicide for controlling agricultural pests, is an important organophosphorus pesticide and an environmental pollutant which induces toxic effects on living organisms during long-term exposure. Thymoquinone (TQ) is a phytochemical bioactive compound with antioxidant and anti-inflammatory properties. We aimed to evaluate the protective effects of TQ against DZN-induced hepatotoxicity through alleviating oxidative stress and enhancing cholinesterase (ChE) enzyme activity. METHODS: Rats were randomly divided into six groups (n = 8); a negative control group receiving corn oil; a group only receiving DZN (20 mg/kg/day); a group treated with TQ (10 mg/kg/day), and three treatment groups as TQ + DZN, receiving different doses of TQ (2.5, 5, and 10 mg/kg/day). All experimental animals were orally treated for 28 consecutive days. The levels of superoxide dismutase (SOD), glutathione (GSH), malondialdehyde (MDA), alanine transaminase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), and lactic acid dehydrogenase (LDH) were determined. In addition, ChE activity and histopathological changes were evaluated. RESULTS: The results showed that DZN decreased GSH level (p < 0.01) and SOD activity (p < 0.01) in parallel to an increase in MDA level (p < 0.01) and increased the activity of AST, ALT, ALP, and LDH (p < 0.01) in comparison to the negative control group. Our findings demonstrated that TQ administration could diminish hepatotoxicity and reduce oxidative damage in DZN-treated rats, which could be linked to its antioxidant and free radical scavenging properties. It was also observed that TQ 10 mg/kg remarkably increased the activity of acetylcholinesterase, butyrylcholinesterase, and SOD enzymes, elevated GSH, decreased MDA, and reduced pathological alternations of the liver induced by DZN. CONCLUSION: Thymoquinone 10 mg/kg increased the activity of plasma and blood cholinesterases and reduced DZN-induced alternations of the liver. Improvement of butyryl- and acetylcholinesterase activity suggests that maybe TQ supplement could be beneficial as pre-exposure prophylaxis among farm workers spraying pesticides.


Subject(s)
Chemical and Drug Induced Liver Injury , Hepatitis , Pesticides , Animals , Rats , Diazinon/toxicity , Acetylcholinesterase , Antioxidants/pharmacology , Butyrylcholinesterase , Organophosphorus Compounds , Pesticides/toxicity , Glutathione , Superoxide Dismutase , Alkaline Phosphatase , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/prevention & control
2.
Drug Chem Toxicol ; 42(6): 585-591, 2019 Nov.
Article in English | MEDLINE | ID: mdl-29648463

ABSTRACT

Several studies have shown that oxidative stress and cell damage can occur at very early stages of diazinon (DZN) exposure. The present study was designed to determine the beneficial effect of thymoquinone (Thy), the main component of Nigella sativa (black seed or black cumin), against DZN cardio-toxicity in rats. In the present experimental study, 48 male Wistar rats were randomly divided into six groups: control (corn oil gavages), DZN gavages (20 mg/kg/day), Thy gavages (10 mg/kg/day) and Thy + DVN gavages (2.5, 5 and 10 mg/kg/day). Treatments were continued for 28 days, then the animals were anesthetized by ether and superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST), lactate dehydrogenize (LDH) and glutathione peroxide (GPX) activity was evaluated. In addition, glutathione (GSH) and malondialdehyde (MDA) the heart tissue and creatinephosphokinase-MB (CPK-MB) and troponin (TPI) levels and cholinesterase activity in the blood were evaluated. DZN-induced oxidative damage and elevated the levels of the cardiac markers CK-MB, TPI, MDA and LDH and decreased SOD, CAT and cholinesterase activity and GSH level compared with the control group. Treatment with Thy reduced DZN cardio-toxicity and cholinesterase activity. The success of Thy supplementation against DZN toxicity can be attributed to the antioxidant effects of its constituents. Administration of Thy as a natural antioxidant decreased DZN cardio-toxicity and improved cholinesterase activity in rats through the mechanism of free radical scavenging.


Subject(s)
Antioxidants/pharmacology , Benzoquinones/pharmacology , Cardiotoxicity/prevention & control , Diazinon/toxicity , Animals , Antioxidants/administration & dosage , Benzoquinones/administration & dosage , Cholinesterase Inhibitors/toxicity , Cholinesterases/drug effects , Cholinesterases/metabolism , Dose-Response Relationship, Drug , Free Radical Scavengers/administration & dosage , Free Radical Scavengers/pharmacology , Insecticides/toxicity , Male , Nigella sativa/chemistry , Oxidative Stress/drug effects , Rats , Rats, Wistar , Superoxide Dismutase/metabolism
3.
Environ Toxicol Pharmacol ; 55: 217-222, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28938193

ABSTRACT

Several studies have shown that oxidative stress and cell damage can occur in the very early stages of diazinon (DZN) exposure. The present study was designed to determine the beneficial effect of thymoquinone (Thy), the main component of Nigella sativa (black seed or black cumin) against DZN immunotoxicity, hematotoxicity and genotoxicity in rats. In the present experimental study, 48 male Wistar rats were randomly divided into six groups, (eight per group) as follows: control (receiving corn oil as the DZN solvent), DZN (20mg/kg), Thy (10mg/kg), Thy (2.5mg/kg)+DZN, Thy (5mg/kg)+DZN and Thy (10mg/kg)+DZN. After four weeks of treatment, the hematological parameters of red blood cells (RBCs), white blood cells (WBCs), hemoglobin (Hb), hematocrit (Hct) and platelets (PLTs) were evaluated. The evaluation of genotoxicity was carried out using the micronucleus assay. For measurement of cytokine production, interferon gamma (IFN-γ), interleukin 10 (IL10) and interleukin 4 (IL4) were chosen as immunotoxicity indicators of DZN toxicity. DZN was found to decrease RBCs, WBCs, Hb, Hct, PLTs, butyrl- and acetyl-cholinesterase activity and I FN-γ and increased the micronucleus indices of IL10 and IL4 as compared with the control group. Treatment with Thy reduced DZN hematotoxicity and immunotoxicity, but, significantly, did not prevent genotoxicity. This study showed that Thy (without the significant effect on genotoxicity) decreased the hematological toxicity, immunotoxicity and butyrl and acetyl cholinesterase activity induced by DZN. The success of Thy supplementation against DZN toxicity can be attributed to the antioxidant effects of its constituents.


Subject(s)
Benzoquinones/administration & dosage , Blood Cells/drug effects , Cytokines/drug effects , DNA Damage/drug effects , Diazinon/toxicity , Hemoglobins/drug effects , Animals , Benzoquinones/pharmacology , Blood Platelets/drug effects , Erythrocytes/drug effects , Hematocrit , Leukocytes/drug effects , Lipid Peroxidation/drug effects , Male , Oxidative Stress/drug effects , Random Allocation , Rats , Rats, Wistar
4.
Daru ; 23: 22, 2015 Feb 26.
Article in English | MEDLINE | ID: mdl-25888861

ABSTRACT

BACKGROUND: Tramalol overdose is disproportionately more common in Iran. In recent years, Tramadol overdose has become one of the most common causes of poisoning admissions to emergency departments in this country. To the best of our knowledge, there is little or no information regarding the toxicokinetic properties of Tramadol such as its half life. Given the fact that poisoning management should be based on the toxicokinetic of substances, we aimed at investigating the half life of Tramadol in man as a critical toxicokinetic variable in overdose. METHODS: Blood samples of each patient were collected on admission and repeated later. Plasma was harvested after separation from blood cells by centrifugation and quantified using HPLC method. Calculations were performed on Tramadol blood concentration quantities. FINDINGS: Demographic: Most of cases were men (81.81%). Mean (Standard Deviation (SD), min-max) age was 23 (8.142, 17-40). Serum Tramadol levels: Mean (SD, min-max) first Tramadol concentration was 786.91 (394.53, 391-1495). Mean (SD, min-max) second Tramadol concentration was 433.09 (269.63, 148-950). Mean (SD, min-max) of Tramadol half life was calculated as 9.24 hour (2.310, 4.99-13.45) Associations: Half life was associated with higher concentrations (r=0.708 Sig=0.015). CONCLUSION: We report the mean half life of tramadol in overdose to be 9.24 hours which is remarkably higher than that measured in previous pharmacokinetic studies. We also concluded that Tramadol half life is dose dependent in overdose which may explain the further consequences of severe overdoses.


Subject(s)
Analgesics, Opioid/pharmacokinetics , Drug Overdose/etiology , Tramadol/pharmacokinetics , Adolescent , Adult , Analgesics, Opioid/poisoning , Cross-Sectional Studies , Drug Overdose/blood , Female , Half-Life , Humans , Iran , Male , Prospective Studies , Tramadol/poisoning , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...