Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Front Nutr ; 10: 1150789, 2023.
Article in English | MEDLINE | ID: mdl-37502726

ABSTRACT

Growing populations, changing dietary preferences and limitations on natural resources have meant that finding an alternative to traditional animal-based protein sources is a priority. Insects have been proposed as a possible solution due to their many benefits including low resource inputs and rich nutritional profile. However, insects are not consumed on a large scale by Australians. Food neophobia (reluctance to try new foods) could be contributing to this delay and as such, this study aimed to explore the role of food neophobia on protein food source habits and willingness to eat insects as food. A total of 601 participants (76.2% female, 23.8% male) completed an online survey which included a questionnaire measuring food neophobia status, participants' self-reported usual protein dietary habits, their previous insect-eating experience, future willingness to eat insects, and potential motivations to include insects in their diet. Results indicated a strong association between food neophobia and participants' dietary choices such as following a vegan or vegetarian diet (p = 0.024). In addition, food neophobia was correlated with a reduced likelihood of previous insect-eating experience (p < 0.001), as well as a decreased willingness to eat insects in the future (p < 0.001). This study provides a greater understanding of the role of food neophobia status and dietary choices in consumers' willingness to eat insects and identifies possible motivating factors that may increase the likelihood of consumers' future insect eating.

2.
Appetite ; 180: 106336, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36216215

ABSTRACT

Taste receptors are located on the epithelial surface throughout the alimentary canal to identify nutrients and potential toxins. In the oral cavity, the role of taste is to encourage or discourage ingestion, while in the gastrointestinal (GI) tract, the taste receptors help the body prepare for an appropriate response to the ingested foods. The GI sensing of bitter compounds may alter the secretion of appetite-related hormones thereby reducing food intake, which may have potential use for managing health outcomes. This systematic literature review investigated the acute effects of administering different bitter tasting compounds on circulating levels of selected GI hormones, subjective appetite, and energy intake in humans. A literature search was conducted using Medline, CINAHL and Web of Science databases. Of 290 articles identified, 16 met the inclusion criteria. Twelve studies assessed food intake; four of these found bitter administration decreased food intake and eight did not. Fourteen studies assessed subjective appetite; seven found bitter administration affected at least one measure of appetite and seven detected no significant changes. Nine studies included measures of GI hormones; no significant effects were found for changes in GLP-1, CCK or PYY. Four studies measured motilin and ghrelin and found mostly consistent changes in either food intake or subjective appetite. Overall, the data on food intake and subjective appetite were inconsistent, with only motilin and ghrelin responsive to post-oral bitter administration. There is limited consistent conclusive evidence that bitter compounds influence food intake, appetite or hormones with the reasons for this discussed within. SYSTEMATIC REVIEW REGISTRATION: CRD42021226102.


Subject(s)
Appetite Regulation , Energy Intake , Humans , Hormones
3.
Sports (Basel) ; 10(5)2022 Apr 30.
Article in English | MEDLINE | ID: mdl-35622478

ABSTRACT

BACKGROUND: Combining the key adaptation of plasma volume (PV) expansion with synergistic physiological effects of other acclimation interventions to maximise endurance performance in the heat has potential. The current study investigated the effects of heat acclimation alone (H), combined with normobaric hypoxia exposure (H+NH), on endurance athletic performance. METHODS: Well-trained participants completed a heat-stress trial (30 °C, 80% relative humidity (RH), 20.8% fraction of inspired oxygen (FiO2)) of a 75 min steady-state cycling (fixed workload) and a subsequent 15 min cycling time trial for distance before and after intervention. Participants completed 12 consecutive indoor training days with either heat acclimation (H; 60 min·day-1, 30 °C, 80% RH; 20.8% FiO2) or heat acclimation and overnight hypoxic environment (H+NH; ~12 h, 60% RH; 16% FiO2 simulating altitude of ~2500 m). Control (CON) group trained outdoors with average maximum daily temperature of 16.5 °C and 60% RH. RESULTS: Both H and H+NH significantly improved time trial cycling distance by ~5.5% compared to CON, with no difference between environmental exposures. PV increased (+3.8%) and decreased (-4.1%) following H and H+NH, respectively, whereas haemoglobin concentration decreased (-2%) and increased (+3%) in H and H+NH, respectively. CONCLUSION: Our results show that despite contrasting physiological adaptations to different environmental acclimation protocols, heat acclimation with or without hypoxic exposure demonstrated similar improvements in short-duration exercise performance in a hot environment.

4.
Appetite ; 169: 105832, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34896167

ABSTRACT

Increasing global populations and limitations on the natural resources required in food production such as land and water will place further pressure on an already strained food production system. To meet the future food production requirements, it is essential to find viable alternatives to current food sources, without the high resource challenges. Protein production is of particular concern and insects are a nutritious and sustainable source yet, despite a rich history in parts of the world, Australians have been reluctant to adopt the practice as a societal norm. This study aimed to explore Australian consumers' experiences with edible insects, identify barriers to consumption, and explore possible factors that may motivate Australians to consume insects. A total of 601 participants (23.8% male, 76.2% female), completed an online survey using a variety of open-ended questions; 5- or 7-point Likert scales and check-all-that-apply questions. Consumer willingness was measured through self-reporting willingness-to-try insects or insect-based foods. Results indicated 35.4% of participants had previously consumed insects, with Orthoptera (crickets, grasshoppers) the most commonly consumed order (60.1%). Participants with no previous experience consuming insects cited 'lack of opportunity' as the main reason (57.2%). 'Increased accessibility' (56.6%) and 'increased nutrition knowledge' (56.6%) were identified as major factors that may increase the likelihood of future insect consumption. Participants reporting that they were willing to try insects were most likely to accept 'insect-based flour' (65.6%) and 'chocolate-covered ants' (52.1%). By providing increased opportunity, accessibility and education of insect-based food products, a higher proportion of Australians may be willing to eat insects, particularly if presented in indistinguishable forms (i.e. flour). This may lead to a greater acceptance of insects as an alternative, more sustainable protein source than previously anticipated.


Subject(s)
Edible Insects , Animals , Australia , Consumer Behavior , Female , Flour , Humans , Insecta , Male
5.
Insects ; 12(7)2021 Jul 04.
Article in English | MEDLINE | ID: mdl-34357268

ABSTRACT

The Black Soldier Fly (BSF) offers the potential to address two global challenges; the environmental detriments of food waste and the rising demand for protein. Food waste digested by BSF larvae can be converted into biomass, which may then be utilized for the development of value-added products including new food sources for human and animal consumption. A systematic literature search was conducted to identify studies investigating the influence of food waste rearing substrates on BSF larvae protein composition. Of 1712 articles identified, 23 articles were selected for inclusion. Based on the results of this review, BSF larvae reared on 'Fish waste Sardinella aurita' for two days reported the highest total protein content at 78.8% and BSF larvae reared on various formulations of 'Fruit and vegetable' reported the lowest protein content at 12.9%. This review is the first to examine the influence of food waste on the protein composition of BSF larvae. Major differences in larval rearing conditions and methods utilized to perform nutritional analyses, potentially influenced the reported protein composition of the BSF larvae. While this review has highlighted the role BSF larvae in food waste management and alternative protein development, their application in nutrition is still in its infancy.

6.
Nutr Metab (Lond) ; 17: 68, 2020.
Article in English | MEDLINE | ID: mdl-32821265

ABSTRACT

BACKGROUND: Physical exercise and activity status may modify the effect of the fat mass- and obesity-associated (FTO) genotype on body weight and obesity risk. To understand the interaction between FTO's effect and physical activity, the present study investigated the effects of high and low intensity exercise on FTO mRNA and protein expression, and potential modifiers of exercise-induced changes in FTO in healthy-weighted individuals. METHODS: Twenty-eight untrained males and females (25.4 ± 1.1 years; 73.1 ± 2.0 kg; 178.8 ± 1.4 cm; 39.0 ± 1.2 ml.kg.min- 1 VO2peak) were genotyped for the FTO rs9939609 (T > A) polymorphism and performed isocaloric (400 kcal) cycle ergometer exercise on two separate occasions at different intensities: 80% (High Intensity (HI)) and 40% (Low Intensity (LO)) VO2peak. Skeletal muscle biopsies (vastus lateralis) and blood samples were taken pre-exercise and following 10 and 90 mins passive recovery. RESULTS: FTO mRNA expression was significantly decreased after HI intensity exercise (p = 0.003). No differences in basal and post-exercise FTO protein expression were evident between FTO genotypes. Phosphorylated adenosine monophosphate-activated protein kinase (AMPK) and Akt substrate of 160 kDa (AS160) were significantly increased following HI intensity exercise (p < 0.05). Multivariate models of metabolomic data (orthogonal two partial least squares discriminant analysis (O2PLS-DA)) were unable to detect any significant metabolic differences between genotypes with either exercise trial (p > 0.05). However, skeletal muscle glucose accumulation at 10 mins following HI (p = 0.021) and LO (p = 0.033) intensity exercise was greater in AA genotypes compared to TT genotypes. CONCLUSION: Our novel data provides preliminary evidence regarding the effects of exercise on FTO expression in skeletal muscle. Specifically, high intensity exercise downregulates expression of FTO mRNA and suggests that in addition to nutritional regulation, FTO could also be regulated by exercise. TRIAL REGISTRATION: ACTRN12612001230842. Registered 21 November 2012 - Prospectively registered, https://www.anzctr.org.au/.

7.
Nutrients ; 11(10)2019 Oct 18.
Article in English | MEDLINE | ID: mdl-31635368

ABSTRACT

The rs9939609 polymorphism of the fat mass and obesity-associated (FTO) gene has been associated with obesity, and studies have also shown that environmental/lifestyle interaction such as dietary intake might mediate this effect. The current study investigates the postprandial hormonal regulators of hunger and indirect markers of substrate utilisation and metabolic flexibility following a dietary challenge to determine if suppression of circulating ghrelin levels and/or reduced metabolic flexibility exist between FTO genotypes. One hundred and forty seven healthy, sedentary males and females (29.0 ± 0.7 yrs; 70.2 ± 1.1 kg; 169.1 ± 0.8 cm; 24.5 ± 0.3 kg/m2) complete a single experimental session. Anthropometric measures, circulating levels of active ghrelin, insulin and glucose, and substrate oxidation via indirect calorimetry, are measured pre-prandial and/or post-prandial. The FTO rs9939609 variant is genotyped using a real-time polymerase chain reaction. Metabolic flexibility (∆RER) is similar between FTO genotypes of the rs9939609 (T > A) polymorphism (p > 0.05). No differences in pre-prandial and/or postprandial substrate oxidation, plasma glucose, serum insulin or ghrelin are observed between genotypes (p > 0.05). These observations are independent of body mass index and gender. Altered postprandial responses in hunger hormones and metabolic flexibility may not be a mechanism by which FTO is associated with higher BMI and obesity in healthy, normal-weighted individuals.


Subject(s)
Alpha-Ketoglutarate-Dependent Dioxygenase FTO/metabolism , Energy Intake , Gene Expression Regulation/drug effects , Genotype , Ghrelin/metabolism , Adult , Alleles , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics , Blood Glucose , Diet , Energy Metabolism/physiology , Female , Ghrelin/genetics , Glucose/pharmacology , Humans , Insulin , Male , Middle Aged , Young Adult
8.
Eur J Appl Physiol ; 114(8): 1715-24, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24832191

ABSTRACT

INTRODUCTION: ß-alanine (BAl) and NaHCO3 (SB) ingestion may provide performance benefits by enhancing concentrations of their respective physiochemical buffer counterparts, muscle carnosine and blood bicarbonate, counteracting acidosis during intense exercise. This study examined the effect of BAl and SB co-supplementation as an ergogenic strategy during high-intensity exercise. METHODS: Eight healthy males ingested either BAl (4.8 g day(-1) for 4 weeks, increased to 6.4 g day(-1) for 2 weeks) or placebo (Pl) (CaCO3) for 6 weeks, in a crossover design (6-week washout between supplements). After each chronic supplementation period participants performed two trials, each consisting of two intense exercise tests performed over consecutive days. Trials were separated by 1 week and consisted of a repeated sprint ability (RSA) test and cycling capacity test at 110 % Wmax (CCT110 %). Placebo (Pl) or SB (300 mg kgbw(-1)) was ingested prior to exercise in a crossover design to creating four supplement conditions (BAl-Pl, BAl-SB, Pl-Pl, Pl-SB). RESULTS: Carnosine increased in the gastrocnemius (n = 5) (p = 0.03) and soleus (n = 5) (p = 0.02) following BAl supplementation, and Pl-SB and BAl-SB ingestion elevated blood HCO3 (-) concentrations (p < 0.01). Although buffering capacity was elevated following both BAl and SB ingestion, performance improvement was only observed with BAl-Pl and BAl-SB increasing time to exhaustion of the CCT110 % test 14 and 16 %, respectively, compared to Pl-Pl (p < 0.01). CONCLUSION: Supplementation of BAl and SB elevated buffering potential by increasing muscle carnosine and blood bicarbonate levels, respectively. BAl ingestion improved performance during the CCT110 %, with no aggregating effect of SB supplementation (p > 0.05). Performance was not different between treatments during the RSA test.


Subject(s)
Dietary Supplements , Exercise Tolerance/drug effects , Exercise , Sodium Bicarbonate/pharmacology , beta-Alanine/pharmacology , Adult , Buffers , Carnosine/metabolism , Cross-Over Studies , Double-Blind Method , Humans , Male , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Muscle, Skeletal/physiology , Oxygen Consumption , Sodium Bicarbonate/administration & dosage , Sodium Bicarbonate/blood , beta-Alanine/administration & dosage , beta-Alanine/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...