Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Opt Express ; 23(19): 24888-902, 2015 Sep 21.
Article in English | MEDLINE | ID: mdl-26406689

ABSTRACT

For exploring the application potential of coherent soft x-ray (SXR) and extreme ultraviolet radiation (XUV) provided by high-harmonic generation, it is important to characterize the central output parameters. Of specific importance are pulse-to-pulse (shot-to-shot) fluctuations of the high-harmonic output energy, fluctuations of the direction of the emission (pointing instabilities), and fluctuations of the beam divergence and shape that reduce the spatial coherence. We present the first single-shot measurements of waveguided high-harmonic generation in a waveguided (capillary-based) geometry. Using a capillary waveguide filled with Argon gas as the nonlinear medium, we provide the first characterization of shot-to-shot fluctuations of the pulse energy, of the divergence and of the beam pointing. We record the strength of these fluctuations vs. two basic input parameters, which are the drive laser pulse energy and the gas pressure in the capillary waveguide. In correlation measurements between single-shot drive laser beam profiles and single-shot high-harmonic beam profiles we prove the absence of drive laser beam-pointing-induced fluctuations in the high-harmonic output. We attribute the main source of high-harmonic fluctuations to ionization-induced nonlinear mode mixing during propagation of the drive laser pulse inside the capillary waveguide.

2.
J Synchrotron Radiat ; 22(3): 485-91, 2015 May.
Article in English | MEDLINE | ID: mdl-25931057

ABSTRACT

FERMI is a seeded free-electron laser (FEL) facility located at the Elettra laboratory in Trieste, Italy, and is now in user operation with its first FEL line, FEL-1, covering the wavelength range between 100 and 20 nm. The second FEL line, FEL-2, a high-gain harmonic generation double-stage cascade covering the wavelength range 20-4 nm, has also completed commissioning and the first user call has been recently opened. An overview of the typical operating modes of the facility is presented.

3.
Nature ; 520(7546): 205-8, 2015 Apr 09.
Article in English | MEDLINE | ID: mdl-25855456

ABSTRACT

Four-wave mixing (FWM) processes, based on third-order nonlinear light-matter interactions, can combine ultrafast time resolution with energy and wavevector selectivity, and enable the exploration of dynamics inaccessible by linear methods. The coherent and multi-wave nature of the FWM approach has been crucial in the development of advanced technologies, such as silicon photonics, subwavelength imaging and quantum communications. All these technologies operate at optical wavelengths, which limits the spatial resolution and does not allow the probing of excitations with energy in the electronvolt range. Extension to shorter wavelengths--that is, the extreme ultraviolet and soft-X-ray ranges--would allow the spatial resolution to be improved and the excitation energy range to be expanded, as well as enabling elemental selectivity to be achieved by exploiting core resonances. So far, FWM applications at such wavelengths have been prevented by the absence of coherent sources of sufficient brightness and of suitable experimental set-ups. Here we show how transient gratings, generated by the interference of coherent extreme-ultraviolet pulses delivered by the FERMI free-electron laser, can be used to stimulate FWM processes at suboptical wavelengths. Furthermore, we have demonstrated the possibility of observing the time evolution of the FWM signal, which shows the dynamics of coherent excitations as molecular vibrations. This result opens the way to FWM with nanometre spatial resolution and elemental selectivity, which, for example, would enable the investigation of charge-transfer dynamics. The theoretical possibility of realizing these applications has already stimulated ongoing developments of free-electron lasers: our results show that FWM at suboptical wavelengths is feasible, and we hope that they will enable advances in present and future photon sources.

4.
Phys Rev Lett ; 113(24): 247202, 2014 Dec 12.
Article in English | MEDLINE | ID: mdl-25541801

ABSTRACT

Thin film magnetization reversal without applying external fields is an attractive perspective for applications in sensors and devices. One way to accomplish it is by fine-tuning the microstructure of a magnetic substrate via temperature control, as in the case of a thin Fe layer deposited on a MnAs/GaAs(001) template. This work reports a time-resolved resonant scattering study exploring the magnetic and structural properties of the Fe/MnAs system, using a 100 fs optical laser pulse to trigger local temperature variations and a 100 fs x-ray free-electron laser pulse to probe the induced magnetic and structural dynamics. The experiment provides direct evidence that a single optical laser pulse can reverse the Fe magnetization locally. It reveals that the time scale of the magnetization reversal is slower than that of the MnAs structural transformations triggered by the optical pulse, which take place after a few picoseconds already.

5.
Nat Commun ; 5: 3648, 2014 Apr 16.
Article in English | MEDLINE | ID: mdl-24736496

ABSTRACT

Ultrafast extreme ultraviolet and X-ray free-electron lasers are set to revolutionize many domains such as bio-photonics and materials science, in a manner similar to optical lasers over the past two decades. Although their number will grow steadily over the coming decade, their complete characterization remains an elusive goal. This represents a significant barrier to their wider adoption and hence to the full realization of their potential in modern photon sciences. Although a great deal of progress has been made on temporal characterization and wavefront measurements at ultrahigh extreme ultraviolet and X-ray intensities, only few, if any progress on accurately measuring other key parameters such as the state of polarization has emerged. Here we show that by combining ultra-short extreme ultraviolet free electron laser pulses from FERMI with near-infrared laser pulses, we can accurately measure the polarization state of a free electron laser beam in an elegant, non-invasive and straightforward manner using circular dichroism.

6.
Nat Commun ; 4: 2476, 2013.
Article in English | MEDLINE | ID: mdl-24048228

ABSTRACT

Exploring the dynamics of matter driven to extreme non-equilibrium states by an intense ultrashort X-ray pulse is becoming reality, thanks to the advent of free-electron laser technology that allows development of different schemes for probing the response at variable time delay with a second pulse. Here we report the generation of two-colour extreme ultraviolet pulses of controlled wavelengths, intensity and timing by seeding of high-gain harmonic generation free-electron laser with multiple independent laser pulses. The potential of this new scheme is demonstrated by the time evolution of a titanium-grating diffraction pattern, tuning the two coherent pulses to the titanium M-resonance and varying their intensities. This reveals that an intense pulse induces abrupt pattern changes on a time scale shorter than hydrodynamic expansion and ablation. This result exemplifies the essential capabilities of the jitter-free multiple-colour free-electron laser pulse sequences to study evolving states of matter with element sensitivity.

7.
Phys Rev Lett ; 101(5): 053902, 2008 Aug 01.
Article in English | MEDLINE | ID: mdl-18764393

ABSTRACT

We demonstrate for the first time that seeded harmonic generation on electron storage rings can produce coherent optical pulses in the vacuum ultraviolet spectral range. The experiment is performed at Elettra, where coherent pulses are generated at 132 nm, with a duration of about 100 fs. The light source has a repetition rate of 1 kHz and adjustable polarization; it is very bright, with a peak power several orders of magnitude above that of spontaneous synchrotron radiation. Owing to high stability, the source is used in a test photoemission electron microscopy experiment. We anticipate that seeded harmonic generation on storage rings can lead to unprecedented developments in time-resolved femtosecond spectroscopy and microscopy.

8.
Phys Rev Lett ; 100(10): 104801, 2008 Mar 14.
Article in English | MEDLINE | ID: mdl-18352194

ABSTRACT

Coherent radiation from a relativistic electron beam is a valuable way to overcome the present limitations of conventional lasers and synchrotron radiation light sources. The typical scheme has electrons, directly from a linac, in a single-pass interaction with a laser pulse in the presence of a static undulator magnetic field. We demonstrate that a storage-ring free-electron laser can also achieve harmonic generation (down to 36.5 nm), presenting both experimental and theoretical results, and offer a reliable interpretation of the peculiar underlying physical processes involved.

9.
Article in English | MEDLINE | ID: mdl-10794452

ABSTRACT

Absorption, fluorescence and laser properties of ten selected aromatic compounds from the oligophenylene family are studied experimentally at room temperature (293 K). The first eight compounds are arranged in such way that odd numbered compounds reveal 1Lb --> 1A fluorescence, while even numbered compounds show 1La --> 1A fluorescence. All compounds are family related in pi-structure and are of the same degree of planarity and rigidity. The quantum yield of fluorescence, gamma, and the decay times, tau(f), of non-deaerated and deaerated cyclohexane solutions are measured. The oscillator strength, f(e), the fluorescence rate constant, Kf, natural lifetimes, tau(o)T, and intersystem crossing rate constant, K(ST), are calculated. The lowest 1Lb and 1La singlet and 3La, triplet (77 K) levels are determined. Investigations showed that transition from a polyphenyl molecule which shows 1La --> 1A fluorescence to a family related in the pi-structure molecule which reveals the 1Lb --> 1A fluorescence is accompanied by certain changes in all the fluorescence parameters. This indicates that gamma decreases, tau(f) increases, Kf and the FWRE of the fluorescence spectrum decrease. Moreover, K(ST) also decreases, sometimes very significantly. The decrease in the K(ST) value is explained by the fact that matrix elements of the spin-orbit coupling of the S alpha and Ti states are much lower in value than analogous elements of the spin-orbit coupling of Sp and Ti states. It is shown that all p-polyphenyles exhibit excellent laser action, while m-polyphenyles do not produce laser oscillation under any conditions. The values of K(ST) and other fluorescence parameters measured can be used for various practical purposes and theoretical considerations.


Subject(s)
Hydrocarbons, Aromatic/chemistry , Absorption , Fluorescence , Lasers
10.
Opt Lett ; 19(11): 792-4, 1994 Jun 01.
Article in English | MEDLINE | ID: mdl-19844447

ABSTRACT

Passive mode locking of a cw lamp-pumped Nd:YLF laser with the nonlinear mirror technique is reported. Nearly transform-limited pulses of 13-ps duration and 1.5-W average power at 1.047 microm have been obtained. The nonlinear mirror consists of a lithium triborate frequency-doubling crystal and a dichroic mirror with high reflectivity for the second harmonic and lower reflectivity for the fundamental frequency. The mode-locking process is self-starting, with pulse duration and stability strongly dependent on the cavity parameters.

SELECTION OF CITATIONS
SEARCH DETAIL
...