Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Chem Biol ; 19(10): 1246-1255, 2023 10.
Article in English | MEDLINE | ID: mdl-37592157

ABSTRACT

Mucin-type O-glycosylation is a post-translational modification present at the interface between cells where it has important roles in cellular communication. However, deciphering the function of O-glycoproteins and O-glycans can be challenging, especially as few enzymes are available for their assembly or selective degradation. Here, to address this deficiency, we developed a genetically encoded screening methodology for the discovery and engineering of the diverse classes of enzymes that act on O-glycoproteins. The method uses Escherichia coli that have been engineered to produce an O-glycosylated fluorescence resonance energy transfer probe that can be used to screen for O-glycopeptidase activity. Subsequent cleavage of the substrate by O-glycopeptidases provides a read-out of the glycosylation state of the probe, allowing the method to also be used to assay glycosidases and glycosyltransferases. We further show the potential of this methodology in the first ultrahigh-throughput-directed evolution of an O-glycopeptidase.


Subject(s)
High-Throughput Screening Assays , Mucins , Mucins/metabolism , Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase/metabolism , Glycoproteins/chemistry , Glycosylation , Polysaccharides/chemistry
2.
Angew Chem Int Ed Engl ; 62(21): e202301258, 2023 05 15.
Article in English | MEDLINE | ID: mdl-36940280

ABSTRACT

Suitably configured allyl ethers of unsaturated cyclitols act as substrates of ß-glycosidases, reacting via allylic cation transition states. Incorporation of halogens at the vinylic position of these carbasugars, along with an activated leaving group, generates potent inactivators of ß-glycosidases. Enzymatic turnover of these halogenated cyclitols (F, Cl, Br) displayed a counter-intuitive trend wherein the most electronegative substituents yielded the most labile pseudo-glycosidic linkages. Structures of complexes with the Sulfolobus ß-glucosidase revealed similar enzyme-ligand interactions to those seen in complexes with a 2-fluorosugar inhibitor, the lone exception being displacement of tyrosine 322 from the active site by the halogen. Mutation of Y322 to Y322F largely abolished glycosidase activity, consistent with lost interactions at O5, but minimally affected (7-fold) rates of carbasugar hydrolysis, yielding a more selective enzyme for unsaturated cyclitol ether hydrolysis.


Subject(s)
Cyclitols , Cyclitols/chemistry , Glycoside Hydrolases/metabolism , Glycosides , Catalytic Domain , Enzyme Inhibitors/pharmacology
3.
Chem Sci ; 12(2): 683-687, 2020 Nov 03.
Article in English | MEDLINE | ID: mdl-34163800

ABSTRACT

α-Amylases are among the most widely used classes of enzymes in industry and considerable effort has gone into optimising their activities. Efforts to find better amylase mutants, such as through high-throughput screening, would be greatly aided by access to precise and robust active site titrating agents for quantitation of active mutants in crude cell lysates. While active site titration reagents designed for retaining ß-glycosidases quantify these enzymes down to nanomolar levels, convenient titrants for α-glycosidases are not available. We designed such a reagent by incorporating a highly reactive fluorogenic leaving group onto unsaturated cyclitol ethers, which have been recently shown to act as slow substrates for retaining glycosidases that operate via a covalent 'glycosyl'-enzyme intermediate. By appending this warhead onto the appropriate oligosaccharide, we developed efficient active site titration reagents for α-amylases that effect quantitation down to low nanomolar levels.

4.
J Am Chem Soc ; 139(31): 10629-10632, 2017 08 09.
Article in English | MEDLINE | ID: mdl-28737389

ABSTRACT

Enzymatic prenyl and glycosyl transfer are seemingly unrelated reactions that yield molecules and protein modifications with disparate biological functions. However, both reactions employ diphosphate-activated donors and each proceed via cationic species: allylic cations and oxocarbenium ions, respectively. In this study, we explore the relationship between these processes by preparing valienyl ethers to serve as glycoside mimics that are capable of allylic rather than oxocarbenium cation stabilization. Rate constants for spontaneous hydrolysis of aryl glycosides and their analogous valienyl ethers were found to be almost identical, as were the corresponding activation enthalpies and entropies. This close similarity extended to the associated secondary kinetic isotope effects (KIEs), indicating very similar transition state stabilities and structures. Screening a library of over 100 ß-glucosidases identified a number of enzymes that catalyze hydrolysis of these valienyl ethers with kcat values up to 20 s-1. Detailed analysis of one such enzyme showed that ether hydrolysis occurs via the analogous mechanisms found for glycosides, and through a very similar transition state. This suggests that the generally lower rates of enzymatic cleavage of the cyclitol ethers reflects evolutionary specialization of these enzymes toward glycosides rather than inherent reactivity differences.


Subject(s)
Allyl Compounds/chemistry , Cations/chemistry , Cellulases/metabolism , Glycosides/chemistry , Cyclohexenes/chemistry , Glycosylation , Hexosamines/chemistry , Hydrolysis , Kinetics , Molecular Structure
5.
ACS Chem Biol ; 11(7): 1784-94, 2016 07 15.
Article in English | MEDLINE | ID: mdl-27176929

ABSTRACT

A robust platform for facile defined glycan synthesis does not exist. Yet the need for such technology has never been greater as researchers seek to understand the full scope of carbohydrate function, stretching beyond the classical roles of structure and energy storage to encompass highly nuanced cell signaling events. To comprehensively explore and exploit the full diversity of carbohydrate functions, we must first be able to synthesize them in a controlled manner. Toward this goal, traditional chemical syntheses are inefficient while nature's own synthetic enzymes, the glycosyl transferases, can be challenging to express and expensive to employ on scale. Glycoside hydrolases represent a pool of glycan processing enzymes that can be either used in a transglycosylation mode or, better, engineered to function as "glycosynthases," mutant enzymes capable of assembling glycosides. Glycosynthases grant access to valuable glycans that act as functional and structural probes or indeed as inhibitors and therapeutics in their own right. The remodelling of glycosylation patterns in therapeutic proteins via glycoside hydrolases and their mutants is an exciting frontier in both basic research and industrial scale processes.


Subject(s)
Glycosides/chemical synthesis , Ligases/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...