Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 10(1): 21628, 2020 12 10.
Article in English | MEDLINE | ID: mdl-33303821

ABSTRACT

Diabetic nephropathy (DN), a microvascular complication of diabetes, is the leading cause of end-stage renal disease worldwide. Multiple studies have shown that podocyte dysfunction is a central event in the progression of the disease. Beside chronic hyperglycemia, dyslipidemia can induce insulin resistance and dysfunction in podocytes. However, the exact mechanisms of free fatty acid (FFA)-induced podocyte insulin unresponsiveness are poorly understood. We used a type 2 diabetic mouse model (db/db) and mouse podocytes exposed to palmitic acid for 24 h followed by an insulin stimulation. Renal function and pathology were evaluated at 25 weeks of age to confirm the DN development. Our results demonstrate that saturated FFA activated the serine/threonine kinases IκB kinase (IKK)ß/IκBα and mTORC1/S6K1, but not protein kinase C and c-jun N-terminal kinase, in podocytes and glomeruli of db/db mice. Activation of both kinases promoted serine 307 phosphorylation of IRS1, a residue known to provoke IRS1 inhibition. Using IKK, mTORC1 and ceramide production inhibitors, we were able to blunt IRS1 serine 307 phosphorylation and restore insulin stimulation of Akt. In conclusion, our results indicate that FFA and diabetes contribute to insulin resistance through the activation of IKKß and S6K1 leading to podocyte dysfunction and DN.


Subject(s)
Fatty Acids/metabolism , I-kappa B Kinase/metabolism , Insulin Receptor Substrate Proteins/antagonists & inhibitors , Insulin Resistance , Mechanistic Target of Rapamycin Complex 1/metabolism , Podocytes/metabolism , Animals , Diabetic Nephropathies/genetics , Diabetic Nephropathies/pathology , Insulin/metabolism , Kidney/physiopathology , Mice , Phosphorylation , Receptors, Leptin/genetics , Serine/metabolism , Signal Transduction
2.
Diabetes ; 68(5): 1026-1039, 2019 05.
Article in English | MEDLINE | ID: mdl-30862678

ABSTRACT

Diabetic nephropathy (DN) remains the leading cause of end-stage renal disease. Hyperglycemia-induced podocyte dysfunction is a major contributor of renal function impairment in DN. Previous studies showed that activation of mitogen-activated protein kinase (MAPK) in diabetes promotes podocyte dysfunction and cell death. Dual specificity phosphatases (DUSPs) are a family of phosphatases mainly responsible for MAPK inhibition. In this study, we demonstrated that diabetes and high glucose exposure decreased DUSP4 expression in cultured podocytes and glomeruli. Diabetes-induced DUSP4 reduction enhanced p38 and c-Jun N-terminal kinase (JNK) activity and podocyte dysfunction. The overexpression of DUSP4 prevented the activation of p38, JNK, caspase 3/7 activity, and NADPH oxidase 4 expression induced by high glucose level exposure. Deletion of DUSP4 exacerbated albuminuria and increased mesangial expansion and glomerular fibrosis in diabetic mice. These morphological changes were associated with profound podocyte foot process effacement, cell death, and sustained p38 and JNK activation. Moreover, inhibition of protein kinase C-δ prevented DUSP4 expression decline and p38/JNK activation in the podocytes and renal cortex of diabetic mice. Analysis of DUSP4 expression in the renal cortex of patients with diabetes revealed that decreased DUSP4 mRNA expression correlated with reduced estimated glomerular filtration rate (<60 mL/min/1.73 m2). Thus, this study demonstrates that preserving DUSP4 expression could protect against podocyte dysfunction and preserve glomerular function in DN.


Subject(s)
Diabetes Mellitus, Experimental/metabolism , Diabetic Nephropathies/metabolism , Podocytes/metabolism , Protein Tyrosine Phosphatases/metabolism , Animals , Caspase 3/metabolism , Caspase 7/metabolism , Cells, Cultured , Diabetes Mellitus, Experimental/genetics , Disease Progression , Kidney Glomerulus/metabolism , Male , Mice , Mitogen-Activated Protein Kinases/genetics , Mitogen-Activated Protein Kinases/metabolism , NADPH Oxidase 4/genetics , NADPH Oxidase 4/metabolism , Protein Tyrosine Phosphatases/genetics , p38 Mitogen-Activated Protein Kinases/genetics , p38 Mitogen-Activated Protein Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...