Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Educ ; 101(4): 1457-1468, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38617816

ABSTRACT

The effectiveness of active learning on promoting students' academic outcomes and persistence has been established in the literature. However, despite the effort of purposeful change agents, the uptake of active learning in science, technology, engineering, and mathematics (STEM) is slow. While previous research from the chemistry education community has provided insights into the implementation of specific active learning strategies across the United States, the extent to which chemistry instructors leverage these strategies in general remains unknown. This article presents the results of a national survey aimed at exploring introductory chemistry instructors' knowledge and implementation of active learning, variations on this knowledge, and use across tenure statuses and institution types. This paper also aims to address the gap in the literature in our understanding of the characteristics of instructors of these courses. We thus provide a description of instructors' demographics, training, teaching experience, and teaching responsibilities. Our findings reveal that instructors in these courses are prominently males of European descent. Additionally, instructors come into their teaching position with minimal pedagogical training and participate mainly in short training once in their position. While the majority of instructors have knowledge of specific active learning strategies, their consistent implementation remains limited, with lecturing still being the instructional practice of choice. Variations were found between institution types and across tenure statuses within institutions in terms of pedagogical training, use of specific active learning strategies, and proportion of class time spent lecturing. The findings provide a baseline for future studies that aim to assess the effectiveness of interventions fostering the implementation of active learning in introductory chemistry courses and highlight the critical need for improved communication about teaching practices across institutions and tenure statuses.

2.
Int J STEM Educ ; 8(1): 17, 2021.
Article in English | MEDLINE | ID: mdl-33643775

ABSTRACT

BACKGROUND: Adoption and use of effective, research-based instructional strategies (RBISs) for STEM education is less widespread than hoped. To promote further use of RBISs, the propagation paradigm suggests that developers work with potential adopters during the development process, and provide ongoing support after adoption. This article investigates the impact of a faculty online learning community (FOLC) as a professional development mechanism for supporting faculty adopting a research-based curriculum. A FOLC uses video conference technology and online platforms to connect geographically dispersed faculty with similar backgrounds (e.g., physics faculty) and supports their teaching development. In the context of a specific FOLC, this article seeks to determine the outcomes the FOLC achieves, and how. RESULTS: Analysis of a FOLC meeting identified opportunities for rich, complex social interaction centered on the research-based curriculum. By functioning as a sounding board for ideas, a space to share experiences, a source of affective support, and a venue for troubleshooting, the FOLC mediates the achievement of a range of outcomes related to implementation of the curriculum. Survey results indicate that members feel a sense of community in the FOLC and that it provides encouragement through teaching challenges. Further results indicate participants' increased confidence in using the curriculum; familiarity with the curriculum structure and content; increased knowledge of pedagogical techniques; reflection on teaching practices in the curriculum; and use of pedagogical techniques aligned with the curriculum's core principles. Emerging evidence supports more distal outcomes, including student learning, persistence in using the curriculum, reflection in teaching practice across courses taught, and use of research-based pedagogy in other courses. CONCLUSIONS: The propagation paradigm emphasizes the need for ongoing support for adopters of RBISs. The FOLC model provides participating faculty with ongoing support through participation in a community and is an effective support mechanism for adopters of a research-based curriculum. In this study, FOLC members are increasing their knowledge and use of pedagogical techniques in the curriculum-specific course and beyond. This is facilitated by the opportunities in the FOLC for troubleshooting, idea sharing, and receiving encouragement through challenges. This model has the potential to support adopters of additional educational innovations. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s40594-020-00268-7.

3.
PLoS One ; 16(2): e0247544, 2021.
Article in English | MEDLINE | ID: mdl-33630945

ABSTRACT

Six common beliefs about the usage of active learning in introductory STEM courses are investigated using survey data from 3769 instructors. Three beliefs focus on contextual factors: class size, classroom setup, and teaching evaluations; three focus on individual factors: security of employment, research activity, and prior exposure. The analysis indicates that instructors in all situations can and do employ active learning in their courses. However, with the exception of security of employment, trends in the data are consistent with beliefs about the impact of these factors on usage of active learning. We discuss implications of these results for institutional and departmental policies to facilitate the use of active learning.


Subject(s)
Educational Personnel , Problem-Based Learning/methods , Universities , Educational Personnel/education , Educational Personnel/psychology , Engineering/education , Humans , Mathematics/education , Physics/education , Students , Surveys and Questionnaires , Technology/education , United States
4.
Int J STEM Educ ; 5(1): 10, 2018.
Article in English | MEDLINE | ID: mdl-30631700

ABSTRACT

BACKGROUND: Women and students of color are widely underrepresented in most STEM fields. In order to investigate this underrepresentation, we interviewed 201 college seniors, primarily women and people of color, who either majored in STEM or started but dropped a STEM major. Here we discuss one section of the longer interview that focused on students' sense of belonging, which has been found to be related to retention. In our analysis, we examine the intersections of race and gender with students' sense of belonging, a topic largely absent from the current literature. RESULTS: We found that white men were most likely to report a sense of belonging whereas women of color were the least likely. Further, we found that representation within one's STEM sub-discipline, namely biology versus the physical sciences, impacts sense of belonging for women. Four key factors were found to contribute to sense of belonging for all students interviewed: interpersonal relationships, perceived competence, personal interest, and science identity. CONCLUSIONS: Our findings indicate that students who remain in STEM majors report a greater sense of belonging than those who leave STEM. Additionally, we found that students from underrepresented groups are less likely to feel they belong. These findings highlight structural and cultural features of universities, as well as STEM curricula and pedagogy, that continue to privilege white males.

5.
Cell Biol Educ ; 1(3): 87-94, 2002.
Article in English | MEDLINE | ID: mdl-12459792

ABSTRACT

There are increasing numbers of traditional biologists, untrained in educational research methods, who want to develop and assess new classroom innovations. In this article we argue the necessity of formal research over normal classroom feedback. We also argue that traditionally trained biologists can make significant contributions to biology pedagogy. We then offer some guidance to the biologist with no formal educational research training who wants to get started. Specifically, we suggest ways to find out what others have done, we discuss the difference between qualitative and quantitative research, and we elaborate on the process of gaining insights from student interviews. We end with an example of a project that has used many different research techniques.


Subject(s)
Biology/education , Educational Measurement/methods , Interviews as Topic , Learning , Research/education
SELECTION OF CITATIONS
SEARCH DETAIL
...