Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Methods ; 225: 20-27, 2024 May.
Article in English | MEDLINE | ID: mdl-38471600

ABSTRACT

Aberrant gene expression underlies numerous human ailments. Hence, developing small molecules to target and remedy dysfunctional gene regulation has been a long-standing goal at the interface of chemistry and medicine. A major challenge for designing small molecule therapeutics aimed at targeting desired genomic loci is the minimization of widescale disruption of genomic functions. To address this challenge, we rationally design polyamide-based multi-functional molecules, i.e., Synthetic Genome Readers/Regulators (SynGRs), which, by design, target distinct sequences in the genome. Herein, we briefly review how SynGRs access chromatin-bound and chromatin-free genomic sites, then highlight the methods for the study of chromatin processes using SynGRs on positioned nucleosomes in vitro or disease-causing repressive genomic loci in vivo.


Subject(s)
Chromatin , Nucleosomes , Humans , Chromatin/genetics , Chromatin/metabolism , Nucleosomes/genetics , Nucleosomes/metabolism , Nylons/chemistry , Nylons/pharmacology , Gene Expression Regulation/drug effects , Animals , Chromatin Assembly and Disassembly/drug effects , Chromatin Assembly and Disassembly/genetics , Genomics/methods
2.
J Am Chem Soc ; 2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37923569

ABSTRACT

SynTEF1, a prototype synthetic genome reader/regulator (SynGR), was designed to target GAA triplet repeats and restore the expression of frataxin (FXN) in Friedreich's ataxia patients. It achieves this complex task by recruiting BRD4, via a pan-BET ligand (JQ1), to the GAA repeats by using a sequence-selective DNA-binding polyamide. When bound to specific genomic loci in this way, JQ1 functions as a chemical prosthetic for acetyl-lysine residues that are natural targets of the two tandem bromodomains (BD1 and BD2) in bromo- and extra-terminal domain (BET) proteins. As next-generation BET ligands were disclosed, we tested a select set with improved physicochemical, pharmacological, and bromodomain-selective properties as substitutes for JQ1 in the SynGR design. Here, we report two unexpected findings: (1) SynGRs bearing pan-BET or BD2-selective ligands license transcription at the FXN locus, whereas those bearing BD1-selective ligands do not, and (2) rather than being neutral or inhibitory, an untethered BD1-selective ligand (GSK778) substantively enhances the activity of all active SynGRs. The failure of BD1-selective SynGRs to recruit BRD4/BET proteins suggests that rather than functioning as "epigenetic/chromatin mimics," active SynGRs mimic the functions of natural transcription factors in engaging BET proteins through BD2 binding. Moreover, the enhanced activity of SynGRs upon cotreatment with the BD1-selective ligand suggests that natural transcription factors compete for a limited pool of nonchromatin-bound BET proteins, and blocking BD1 directs pan-BET ligands to more effectively engage BD2. Taken together, SynGRs as chemical probes provide unique insights into the molecular recognition principles utilized by natural factors to precisely regulate gene expression, and they guide the design of more sophisticated synthetic gene regulators with greater therapeutic potential.

3.
Med Oncol ; 40(9): 275, 2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37608202

ABSTRACT

Chimeric antigen receptor (CAR)-T cell therapy is a promising new treatment for cancer that involves genetically modifying a patient's T-cells to recognize and attack cancer cells. This review provides an overview of the latest discoveries and clinical trials related to CAR-T cell therapy, as well as the concept and applications of the therapy. The review also discusses the limitations and potential side effects of CAR-T cell therapy, including the high cost and the risk of cytokine release syndrome and neurotoxicity. While CAR-T cell therapy has shown promising results in the treatment of hematologic malignancies, ongoing research is needed to improve the efficacy and safety of the therapy and expand its use to solid tumors. With continued research and development, CAR-T cell therapy has the potential to revolutionize cancer treatment and improve outcomes for patients with cancer.


Subject(s)
Hematologic Neoplasms , Neoplasms , Receptors, Chimeric Antigen , Humans , Neoplasms/therapy , Immunotherapy, Adoptive/adverse effects , Cell- and Tissue-Based Therapy
4.
Org Lett ; 18(11): 2632-5, 2016 06 03.
Article in English | MEDLINE | ID: mdl-27187586

ABSTRACT

The catalytic addition of the amino acid derived bifunctional N-acylaminophosphine to an α-substituted allene ester generated a zwitterionic dipole that engaged the vinylogous ester function of 3-cyano-chromones in a [4 + 2] annulation reaction to deliver tetrahydroxanthones embodying three consecutive chiral centers in high yields and with excellent enantioselectivities. The established asymmetric synthesis further paves the way to two different classes of complex, sp(3)-rich tetracyclic benzopyrans via efficient cascade reactions.

5.
Chem Commun (Camb) ; 51(35): 7536-9, 2015 May 01.
Article in English | MEDLINE | ID: mdl-25846800

ABSTRACT

A catalytic two-step reaction sequence was developed to access a range of complex heterocyclic frameworks based on biorelevant indole/oxindole scaffolds. The reaction sequence includes catalytic Pictet-Spengler cyclization followed by Au(I) catalyzed intramolecular hydroamination of acetylenes. A related cascade polycyclization of a designed ß-carboline embodying a 1,5-enyne group yields the analogues of the alkaloid harmicine.


Subject(s)
Alkaloids/chemistry , Indoles/chemistry , Acetylene/chemistry , Alkaloids/chemical synthesis , Amination , Carbolines/chemistry , Catalysis , Cyclization , Gold/chemistry , Indole Alkaloids/chemical synthesis , Indole Alkaloids/chemistry , Quinolizines/chemical synthesis , Quinolizines/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...