Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Obes Sci Pract ; 4(2): 188-193, 2018 04.
Article in English | MEDLINE | ID: mdl-29670756

ABSTRACT

Introduction: The aim of this study was to investigate the relationship between weight loss during and after a unique type of weight loss intervention, namely, a residential intensive lifestyle intervention (ILI), and participants' obesity-specific health-related quality of life (HRQOL) several years after the intervention. In the residential ILI under investigation, participants attended a 10- to 12-week long course away from their daily living environment, namely, at Ubberup Folk High School located in Denmark. Methods: A total of 79 former participants (31 male, mean age 36.6; SD = 12.7 years) who had participated in the intervention on average 5.3 (SD = 3.2) years ago were recruited for this study. They completed a questionnaire on weight-related quality of life (IWQOL-lite) and physical activity, as well as measurements of VO2max, blood pressure, Homeostatic Model Assessment for Insulin Resistance, waist circumference and hand grip strength. Results: The study results showed that weight change after the end of the intervention could predict HRQOL whereas how much weight they lost during the intervention could not. Furthermore, almost all of the investigated physiological factors were related to participants' current HRQOL. Waist circumference showed relationships with four of the five aspects of HRQOL. Conclusion: Focusing on behavioural change, adhering to improved lifestyle and maintaining weight loss after the end of the intervention seem to be the key not only for cardio-metabolic risk factors but also for sustainable HRQOL.

2.
Scand J Med Sci Sports ; 28(6): 1636-1652, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29469995

ABSTRACT

Live high-train low (LHTL) using hypobaric hypoxia was previously found to improve sea-level endurance performance in well-trained individuals; however, confirmatory controlled data in athletes are lacking. Here, we test the hypothesis that natural-altitude LHTL improves aerobic performance in cross-country skiers, in conjunction with expansion of total hemoglobin mass (Hbmass , carbon monoxide rebreathing technique) promoted by accelerated erythropoiesis. Following duplicate baseline measurements at sea level over the course of 2 weeks, nineteen Norwegian cross-country skiers (three women, sixteen men, age 20 ± 2 year, maximal oxygen uptake (VO2 max) 69 ± 5 mL/min/kg) were assigned to 26 consecutive nights spent at either low (1035 m, control, n = 8) or moderate altitude (2207 m, daily exposure 16.7 ± 0.5 hours, LHTL, n = 11). All athletes trained together daily at a common location ranging from 550 to 1500 m (21.2% of training time at 550 m, 44.2% at 550-800 m, 16.6% at 800-1100 m, 18.0% at 1100-1500 m). Three test sessions at sea level were performed over the first 3 weeks after intervention. Despite the demonstration of nocturnal hypoxemia at moderate altitude (pulse oximetry), LHTL had no specific effect on serum erythropoietin, reticulocytes, Hbmass , VO2 max, or 3000-m running performance. Also, LHTL had no specific effect on (a) running economy (VO2 assessed during steady-state submaximal exercise), (b) respiratory capacities or efficiency of the skeletal muscle (biopsy), and (c) diffusing capacity of the lung. This study, showing similar physiological responses and performance improvements in the two groups following intervention, suggests that in young cross-country skiers, improvements in sea-level aerobic performance associated with LHTL may not be due to moderate-altitude acclimatization.


Subject(s)
Altitude , Athletic Performance/physiology , Hypoxia/blood , Oxygen Consumption , Skiing/physiology , Acclimatization/physiology , Athletes , Erythropoietin/blood , Female , Humans , Male , Oximetry , Physical Conditioning, Human/methods , Reticulocytes/cytology , Young Adult
3.
Acta Physiol (Oxf) ; 222(1)2018 01.
Article in English | MEDLINE | ID: mdl-28580772

ABSTRACT

AIMS: (i) To determine whether exercise-induced increases in muscle mitochondrial volume density (MitoVD ) are related to enlargement of existing mitochondria or de novo biogenesis and (ii) to establish whether measures of mitochondrial-specific enzymatic activities are valid biomarkers for exercise-induced increases in MitoVD . METHOD: Skeletal muscle samples were collected from 21 healthy males prior to and following 6 weeks of endurance training. Transmission electron microscopy was used for the estimation of mitochondrial densities and profiles. Biochemical assays, western blotting and high-resolution respirometry were applied to detect changes in specific mitochondrial functions. RESULT: MitoVD increased with 55 ± 9% (P < 0.001), whereas the number of mitochondrial profiles per area of skeletal muscle remained unchanged following training. Citrate synthase activity (CS) increased (44 ± 12%, P < 0.001); however, there were no functional changes in oxidative phosphorylation capacity (OXPHOS, CI+IIP ) or cytochrome c oxidase (COX) activity. Correlations were found between MitoVD and CS (P = 0.01; r = 0.58), OXPHOS, CI+CIIP (P = 0.01; R = 0.58) and COX (P = 0.02; R = 0.52) before training; after training, a correlation was found between MitoVD and CS activity only (P = 0.04; R = 0.49). Intrinsic respiratory capacities decreased (P < 0.05) with training when respiration was normalized to MitoVD. This was not the case when normalized to CS activity although the percentage change was comparable. CONCLUSIONS: MitoVD was increased by inducing mitochondrial enlargement rather than de novo biogenesis. CS activity may be appropriate to track training-induced changes in MitoVD.


Subject(s)
Endurance Training , Mitochondria, Muscle/metabolism , Mitochondria, Muscle/ultrastructure , Muscle, Skeletal/metabolism , Muscle, Skeletal/ultrastructure , Adult , Citrate (si)-Synthase/analysis , Humans , Male , Organelle Biogenesis , Oxidative Phosphorylation , Young Adult
4.
J Appl Physiol (1985) ; 121(5): 1098-1105, 2016 11 01.
Article in English | MEDLINE | ID: mdl-27633742

ABSTRACT

Bed rest leads to rapid impairments in glucose tolerance. Plasma volume and thus dilution space for glucose are also reduced with bed rest, but the potential influence on glucose tolerance has not been investigated. Accordingly, the aim was to investigate whether bed rest-induced impairments in glucose tolerance are related to a concomitant reduction in plasma volume. This hypothesis was tested mechanistically by restoring plasma volume with albumin infusion after bed rest and parallel determination of glucose tolerance. Fifteen healthy volunteers (age 24 ± 3 yr, body mass index 23 ± 2 kg/m2, maximal oxygen uptake 44 ± 8 ml·min-1·kg-1; means ± SD) completed 4 days of strict bed rest. Glucose tolerance [oral glucose tolerance test (OGTT)] and plasma and blood volumes (carbon monoxide rebreathing) were assessed before and after 3 days of bed rest. On the fourth day of bed rest, plasma volume was restored by means of an albumin infusion prior to an OGTT. Plasma volume was reduced by 9.9 ± 3.0% on bed rest day 3 and area under the curve for OGTT was augmented by 55 ± 67%. However, no association (R2 = 0.09, P = 0.33) between these simultaneously occurring responses was found. While normalization of plasma volume by matched albumin administration (408 ± 104 ml) transiently decreased (P < 0.05) resting plasma glucose concentration (5.0 ± 0.4 to 4.8 ± 0.3 mmol/l), this did not restore glucose tolerance. Bed rest-induced alterations in dilution space may influence resting glucose values but do not affect area under the curve for OGTT.


Subject(s)
Blood Glucose/metabolism , Blood Volume/physiology , Glucose/metabolism , Plasma Volume/physiology , Adult , Albumins/administration & dosage , Bed Rest/methods , Body Mass Index , Glucose Tolerance Test/methods , Humans , Male , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...