Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Neurol ; 11: 373, 2020.
Article in English | MEDLINE | ID: mdl-32435228

ABSTRACT

Background: Meningiomas are the most common adult primary intracranial tumors in the United States. Despite high recurrence rate of atypical and malignant subtypes, there is no approved drug indicated specifically for meningioma. Since the majority of meningiomas exhibit high density of somatostatin receptors subtypes, somatostatin analogs have been under close investigation. The aim of this study was to evaluate efficacy and safety of Sandostatin LAR (octreotide) in patients with progressive, and/or recurrent meningioma, and identify subset of patients who were more likely to benefit from this treatment. Methods: A total of 43 patients ≥ 18 years old were included in the retrospective chart review. The patients underwent treatment with Sandostatin LAR (octreotide) from 01.01.2010 to 06.01.2017 at the University of California, Irvine after confirmation of the diagnosis. Six months progression free survival (PFS6) was defined as a primary endpoint, and the overall survival (OS), safety, and toxicity were identified as secondary endpoints. Results: The OS for 6 months, 1, and 3 years for all WHO grades was 94.8, 88.1, and 67.0%, respectively. The PFS6 for WHO I, II, III, and all was 89.4, 89, 33.3, and 80% respectively. For patients with no prior surgeries, chemotherapy or radiation, the PFS6 was 88.9, 84.8, and 94.8%, respectively. Interestingly, the PFS6 was 90.5% for skull-based and 80% for 3-6 cm tumors. Patients with tumors in parasagittal location had PFS6 of 83.3% compared to PFS6 of 50.0% for patients with convexity tumors. Evaluation of PFS6 based on the effect of estrogen and progesterone on meningioma identified that ER-PR+ tumors had PFS6 of 87.8% while patients with ER-PR- meningiomas had PFS6 of 62.5%. Median TTP for WHO grade I, II, and III was 3.1, 2.40, and 0.26 years, respectively. Subgroup analysis showed that median TTP was 3.1 years for <3 cm tumors, 3.22 years for skull-based tumors, 2.37 years for patients with prior surgeries and 3.10 years for patients with no history of chemotherapy. History of radiation had no effect on median TTP. Sandostatin LAR (octreotide) was well-tolerated. Conclusions:This is one of the largest retrospective analysis of meningioma patients treated with Sandostatin LAR (octreotide) suggesting that this treatment has minimal to no adverse events and could prolong overall survival, and progression free survival especially for patients with ER-PR+ tumors who underwent surgeries for small skull-based tumors.

2.
CNS Oncol ; 7(3): CNS22, 2018 07 01.
Article in English | MEDLINE | ID: mdl-30157683

ABSTRACT

AIM: ERC1671 is an allogeneic/autologous therapeutic glioblastoma (GBM) vaccine - composed of whole, inactivated tumor cells mixed with tumor cell lysates derived from the patient and three GBM donors. METHODS: In this double-blinded, randomized, Phase II study bevacizumab-naive patients with recurrent GBM were randomized to receive either ERC1671 in combination with granulocyte-macrophage colony-stimulating factor (GM-CSF) (Leukine® or sargramostim) and cyclophosphamide plus bevacizumab, or placebo plus bevacizumab. Interim results: Median overall survival (OS) of patients treated with ERC1671 plus bevacizumab was 12 months. In the placebo plus bevacizumab group, median OS was 7.5 months. The maximal CD4+ T-lymphocyte count correlated with OS in the ERC1671 but not in the placebo group. CONCLUSION: The addition of ERC1671/GM-CSF/cyclophosphamide to bevacizumab resulted in a clinically meaningful survival benefit with minimal additional toxicity.


Subject(s)
Antineoplastic Agents, Immunological/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Bevacizumab/therapeutic use , Brain Neoplasms/drug therapy , CD4-Positive T-Lymphocytes/pathology , Glioblastoma/drug therapy , Immunomodulation , Aged , Brain Neoplasms/pathology , Cyclophosphamide/therapeutic use , Double-Blind Method , Female , Glioblastoma/pathology , Granulocyte-Macrophage Colony-Stimulating Factor/therapeutic use , Humans , Kaplan-Meier Estimate , Male , Middle Aged , Neoplasm Recurrence, Local , Treatment Outcome
3.
Int J Mol Sci ; 19(9)2018 Aug 27.
Article in English | MEDLINE | ID: mdl-30150597

ABSTRACT

Glioblastoma is the most common form of brain cancer in adults that produces severe damage to the brain leading to a very poor survival prognosis. The standard of care for glioblastoma is usually surgery, as well as radiotherapy followed by systemic temozolomide chemotherapy, resulting in a median survival time of about 12 to 15 months. Despite these therapeutic efforts, the tumor returns in the vast majority of patients. When relapsing, statistics suggest an imminent death dependent on the size of the tumor, the Karnofsky Performance Status, and the tumor localization. Following the standard of care, the administration of Bevacizumab, inhibiting the growth of the tumor vasculature, is an approved medicinal treatment option approved in the United States, but not in the European Union, as well as the recently approved alternating electric fields (AEFs) generator NovoTTF/Optune. However, it is clear that regardless of the current treatment regimens, glioma patients continue to have dismal prognosis and novel treatments are urgently needed. Here, we describe different approaches of recently developed therapeutic glioma brain cancer vaccines, which stimulate the patient's immune system to recognize tumor-associated antigens (TAA) on cancer cells, aiming to instruct the immune system to eventually attack and destroy the brain tumor cells, with minimal bystander damage to normal brain cells. These distinct immunotherapies may target particular glioma TAAs which are molecularly defined, but they may also target broad patient-derived tumor antigen preparations intentionally evoking a very broad polyclonal antitumor immune stimulation.


Subject(s)
Brain Neoplasms/immunology , Cancer Vaccines/immunology , Glioblastoma/immunology , Immunization/methods , Brain/drug effects , Brain/immunology , Brain/pathology , Brain Neoplasms/drug therapy , Cancer Vaccines/therapeutic use , Glioblastoma/drug therapy , Humans , Immune System/drug effects , Immune System/immunology , Survival Analysis
4.
PLoS One ; 3(3): e1800, 2008 Mar 19.
Article in English | MEDLINE | ID: mdl-18350140

ABSTRACT

BACKGROUND: Dissemination of antimicrobial resistance genes has become an important public health and biodefense threat. Plasmids are important contributors to the rapid acquisition of antibiotic resistance by pathogenic bacteria. PRINCIPAL FINDINGS: The nucleotide sequence of the Klebsiella pneumoniae multiresistance plasmid pMET1 comprises 41,723 bp and includes Tn1331.2, a transposon that carries the bla(TEM-1) gene and a perfect duplication of a 3-kbp region including the aac(6')-Ib, aadA1, and bla(OXA-9) genes. The replication region of pMET1 has been identified. Replication is independent of DNA polymerase I, and the replication region is highly related to that of the cryptic Yersinia pestis 91001 plasmid pCRY. The potential partition region has the general organization known as the parFG locus. The self-transmissible pMET1 plasmid includes a type IV secretion system consisting of proteins that make up the mating pair formation complex (Mpf) and the DNA transfer (Dtr) system. The Mpf is highly related to those in the plasmid pCRY, the mobilizable high-pathogenicity island from E. coli ECOR31 (HPI(ECOR31)), which has been proposed to be an integrative conjugative element (ICE) progenitor of high-pathogenicity islands in other Enterobacteriaceae including Yersinia species, and ICE(Kp1), an ICE found in a K. pneumoniae strain causing primary liver abscess. The Dtr MobB and MobC proteins are highly related to those of pCRY, but the endonuclease is related to that of plasmid pK245 and has no significant homology with the protein of similar function in pCRY. The region upstream of mobB includes the putative oriT and shares 90% identity with the same region in the HPI(ECOR31). CONCLUSIONS: The comparative analyses of pMET1 with pCRY, HPI(ECOR31), and ICE(Kp1 )show a very active rate of genetic exchanges between Enterobacteriaceae including Yersinia species, which represents a high public health and biodefense threat due to transfer of multiple resistance genes to pathogenic Yersinia strains.


Subject(s)
Conjugation, Genetic , Drug Resistance, Microbial/genetics , Klebsiella pneumoniae/genetics , Plasmids , Yersinia pestis/genetics , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...