Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Xenobiotica ; 39(2): 99-112, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19255936

ABSTRACT

1. Recent guidance from the US Food and Drug Administration (USFDA) has advocated testing of time-dependent inhibition of cytochrome P450 (CYP), which can be addressed by performing IC(50) shift as well as K(I)/k(inact) determinations. 2. Direct (IC(50), K(i)) and time-dependent inhibition (IC(50) shift, K(I)/k(inact)) assays were validated in human liver microsomes with liquid chromatography-tandem mass spectrometry (LC/MS/MS) analysis for the following enzyme/substrate/inhibitor combinations: CYP1A2/phenacetin/alpha-naphthoflavone/furafylline, CYP2C8/amodiaquine/montelukast/gemfibrozil-1-O-beta-glucuronide, CYP2C9/diclofenac/sulfaphenazole/tienilic acid, CYP2C19/S-mephenytoin/S-benzylnirvanol/S-fluoxetine, CYP2D6/dextromethorphan/quinidine/paroxetine, and CYP3A4/midazolam/testosterone/ketoconazole/azamulin/verapamil/diltiazem. IC(50) shift assays were performed with two pre-incubation time points (10 and 30 min) to facilitate k(inact) assay design. 3. Data obtained show good agreement with literature values. For rapid acting inhibitors, such as azamulin/CYP3A4 and tienilic acid/CYP2C9, the IC(50) shifts were similar at both time points suggesting a short maximum pre-incubation time with closely spaced time points for the K(I)/k(inact) assay. Slow acting inhibitors (such as verapamil/CYP3A4 or S-fluoxetine/CYP2C19) showed an increase in IC(50) shift between 10 and 30 min suggesting a longer maximum pre-incubation time with wider spacing of time points for K(I)/k(inact). 4. The two-time point IC(50) shift experiment proved to be an excellent method for the selection of appropriate K(I)/k(inact) assay parameters and is suitable for the routine analysis of P450 inhibition by drug candidates.


Subject(s)
Cytochrome P-450 Enzyme Inhibitors , Drug Evaluation, Preclinical/methods , Enzyme Inhibitors/pharmacology , Inhibitory Concentration 50 , Chromatography, Liquid , Enzyme Inhibitors/toxicity , Humans , Microsomes, Liver/drug effects , Microsomes, Liver/metabolism , Tandem Mass Spectrometry , Time Factors
2.
Drug Metab Dispos ; 28(12): 1440-8, 2000 Dec.
Article in English | MEDLINE | ID: mdl-11095581

ABSTRACT

Inhibition of cytochrome P450 catalytic activity is a principal mechanism for pharmacokinetic drug-drug interactions. Rapid, in vitro testing for cytochrome P450 inhibition potential is part of the current paradigm for identifying drug candidates likely to give such interactions. We have explored the extent that qualitative and quantitative inhibition parameters are dependent on the cytochrome P450 (CYP) 3A4 probe substrate. Inhibition potential (e.g., IC(50) values from 8-point inhibition curves) or activation potential for most compounds varied dramatically depending on the fluorometric probe substrates for CYP3A4 [benzyloxyresorufin (BzRes), 7-benzyloxy-4-trifluoromethylcoumarin (BFC), 7-benzyloxyquinoline (BQ), and dibenzylfluorescein (DBF)]. For 21 compounds that were primarily inhibitors, the range of IC(50) values for the four substrates varied from 2.1- to 195-fold with an average of 29-fold. While the rank order of sensitivity among the fluorometric substrates varied among the individual inhibitors, on average, BFC dealkylation was the most sensitive to inhibition, while BQ dealkylation was least sensitive. Partial inhibition was observed with BzRes and BQ but not for BFC and DBF. BzRes was more prone to activation, whereas dramatic changes in IC(50) values were observed when the BQ concentration was below the S(50). Three different correlation analyses indicated that IC(50) values with BFC, BQ, and DBF correlated well with each other, whereas the response with BzRes correlated more weakly with the other substrates. One of these correlation analyses was extended to the percent inhibition of 10 microM inhibitor with the standard CYP3A4 probe substrates testosterone, midazolam, and nifedipine. In this analysis the responses with BQ, BFC and DBF correlated well with testosterone and midazolam but more poorly with nifedipine. In the aggregate, BFC and DBF appear more suitable as an initial screen for CYP3A4 inhibition. However, the substrate-dependent effects reported here and by others indicate that all CYP3A4 inhibition data should be interpreted with caution.


Subject(s)
Cytochrome P-450 Enzyme Inhibitors , Cytochrome P-450 Enzyme System/metabolism , Fluorescent Dyes/pharmacokinetics , Mixed Function Oxygenases/antagonists & inhibitors , Mixed Function Oxygenases/metabolism , Algorithms , Calcium Channel Blockers/metabolism , Chromatography, High Pressure Liquid , Cytochrome P-450 CYP3A , GABA Modulators/metabolism , Humans , In Vitro Techniques , Kinetics , Mass Spectrometry , Midazolam/metabolism , Nifedipine/metabolism , Spectrometry, Fluorescence , Spectrophotometry, Ultraviolet , Testosterone/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...