Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 13(1): 7390, 2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36450728

ABSTRACT

Mercury's southern inner magnetosphere is an unexplored region as it was not observed by earlier space missions. In October 2021, BepiColombo mission has passed through this region during its first Mercury flyby. Here, we describe the observations of SERENA ion sensors nearby and inside Mercury's magnetosphere. An intermittent high-energy signal, possibly due to an interplanetary magnetic flux rope, has been observed downstream Mercury, together with low energy solar wind. Low energy ions, possibly due to satellite outgassing, were detected outside the magnetosphere. The dayside magnetopause and bow-shock crossing were much closer to the planet than expected, signature of a highly eroded magnetosphere. Different ion populations have been observed inside the magnetosphere, like low latitude boundary layer at magnetopause inbound and partial ring current at dawn close to the planet. These observations are important for understanding the weak magnetosphere behavior so close to the Sun, revealing details never reached before.

2.
Space Sci Rev ; 217(1): 11, 2021.
Article in English | MEDLINE | ID: mdl-33487762

ABSTRACT

The ESA-JAXA BepiColombo mission to Mercury will provide simultaneous measurements from two spacecraft, offering an unprecedented opportunity to investigate magnetospheric and exospheric particle dynamics at Mercury as well as their interactions with solar wind, solar radiation, and interplanetary dust. The particle instrument suite SERENA (Search for Exospheric Refilling and Emitted Natural Abundances) is flying in space on-board the BepiColombo Mercury Planetary Orbiter (MPO) and is the only instrument for ion and neutral particle detection aboard the MPO. It comprises four independent sensors: ELENA for neutral particle flow detection, Strofio for neutral gas detection, PICAM for planetary ions observations, and MIPA, mostly for solar wind ion measurements. SERENA is managed by a System Control Unit located inside the ELENA box. In the present paper the scientific goals of this suite are described, and then the four units are detailed, as well as their major features and calibration results. Finally, the SERENA operational activities are shown during the orbital path around Mercury, with also some reference to the activities planned during the long cruise phase.

3.
J Geophys Res Space Phys ; 126(12): e2021JA030014, 2021 Dec.
Article in English | MEDLINE | ID: mdl-35865357

ABSTRACT

Approaches regarding how to turn the instrument background counts into scientifically valuable data are presented in this Technical Report on Methods. The background counts due to penetrating energetic particles of radiation belts detected on Cluster CIS HIA and CODIF instruments and the Double Star HIA instrument are used in these approaches. In HIA spectrograms, the background counts are seen simultaneously in all energy channels marking the entry and exit of the radiation belts by the spacecraft, therefore, the locations of the boundaries of the outer and inner belts can be determined. In the case when HIA measurements are not readily available, a new method is proposed in which supplementary data streams within the CODIF telemetry is exploited. It employs separate counts that register "start," "stop," and "non-valid" signals increasing in the presence of penetrating particles even when no corresponding increase are shown in the energy-time spectrograms. The locations of the radiation belt boundaries are defined by following the changes in counts gradients with time and visual inspection of all the available measurements. The July-August 2007 and September-October 2012 time periods are analyzed for method demonstration on a presence of a third radiation belt, or storage ring.

4.
Science ; 362(6410)2018 10 05.
Article in English | MEDLINE | ID: mdl-30287631

ABSTRACT

Saturn has a sufficiently strong dipole magnetic field to trap high-energy charged particles and form radiation belts, which have been observed outside its rings. Whether stable radiation belts exist near the planet and inward of the rings was previously unknown. The Cassini spacecraft's Magnetosphere Imaging Instrument obtained measurements of a radiation belt that lies just above Saturn's dense atmosphere and is decoupled from the rest of the magnetosphere by the planet's A- to C-rings. The belt extends across the D-ring and comprises protons produced through cosmic ray albedo neutron decay and multiple charge-exchange reactions. These protons are lost to atmospheric neutrals and D-ring dust. Strong proton depletions that map onto features on the D-ring indicate a highly structured and diverse dust environment near Saturn.

5.
Science ; 346(6216): 1506-10, 2014 Dec 19.
Article in English | MEDLINE | ID: mdl-25525244

ABSTRACT

The structure of Earth's magnetosphere is poorly understood when the interplanetary magnetic field is northward. Under this condition, uncharacteristically energetic plasma is observed in the magnetotail lobes, which is not expected in the textbook model of the magnetosphere. Using satellite observations, we show that these lobe plasma signatures occur on high-latitude magnetic field lines that have been closed by the fundamental plasma process of magnetic reconnection. Previously, it has been suggested that closed flux can become trapped in the lobe and that this plasma-trapping process could explain another poorly understood phenomenon: the presence of auroras at extremely high latitudes, called transpolar arcs. Observations of the aurora at the same time as the lobe plasma signatures reveal the presence of a transpolar arc. The excellent correspondence between the transpolar arc and the trapped closed flux at high altitudes provides very strong evidence of the trapping mechanism as the cause of transpolar arcs.

6.
Geophys Res Lett ; 41(24): 8713-8721, 2014 Dec 28.
Article in English | MEDLINE | ID: mdl-26074645

ABSTRACT

During substorm growth phases, magnetic reconnection at the magnetopause extracts ∼1015 J from the solar wind which is then stored in the magnetotail lobes. Plasma sheet pressure increases to balance magnetic flux density increases in the lobes. Here we examine plasma sheet pressure, density, and temperature during substorm growth phases using 9 years of Cluster data (>316,000 data points). We show that plasma sheet pressure and temperature are higher during growth phases with higher solar wind driving, whereas the density is approximately constant. We also show a weak correlation between plasma sheet temperature before onset and the minimum SuperMAG AL (SML) auroral index in the subsequent substorm. We discuss how energization of the plasma sheet before onset may result from thermodynamically adiabatic processes; how hotter plasma sheets may result in magnetotail instabilities, and how this relates to the onset and size of the subsequent substorm expansion phase.

7.
Phys Rev Lett ; 108(6): 061102, 2012 Feb 10.
Article in English | MEDLINE | ID: mdl-22401049

ABSTRACT

Earth's bow shock is a collisionless shock wave but entropy has never been directly measured across it. The plasma experiments on Cluster and Double Star measure 3D plasma distributions upstream and downstream of the bow shock allowing calculation of Boltzmann's entropy function H and his famous H theorem, dH/dt≤0. The collisionless Boltzmann (Vlasov) equation predicts that the total entropy does not change if the distribution function across the shock becomes nonthermal, but it allows changes in the entropy density. Here, we present the first direct measurements of entropy density changes across Earth's bow shock and show that the results generally support the model of the Vlasov analysis. These observations are a starting point for a more sophisticated analysis that includes 3D computer modeling of collisionless shocks with input from observed particles, waves, and turbulences.

8.
Science ; 319(5868): 1380-4, 2008 Mar 07.
Article in English | MEDLINE | ID: mdl-18323452

ABSTRACT

Saturn's moon Rhea had been considered massive enough to retain a thin, externally generated atmosphere capable of locally affecting Saturn's magnetosphere. The Cassini spacecraft's in situ observations reveal that energetic electrons are depleted in the moon's vicinity. The absence of a substantial exosphere implies that Rhea's magnetospheric interaction region, rather than being exclusively induced by sputtered gas and its products, likely contains solid material that can absorb magnetospheric particles. Combined observations from several instruments suggest that this material is in the form of grains and boulders up to several decimetres in size and orbits Rhea as an equatorial debris disk. Within this disk may reside denser, discrete rings or arcs of material.

9.
Phys Rev Lett ; 98(26): 265001, 2007 Jun 29.
Article in English | MEDLINE | ID: mdl-17678094

ABSTRACT

Solitary nonlinear (deltaB/B>>1) electromagnetic pulses have been detected in Earth's geomagnetic tail accompanying plasmas flowing at super-Alfvénic speeds. The pulses in the current sheet had durations of approximately 5 s, were left-hand circularly polarized, and had phase speeds of approximately the Alfvén speed in the plasma frame. These pulses were associated with a field-aligned current J(parallel) and observed in low density (approximately 0.3 cm(-3)), high temperature (T(e) approximately T(i) approximately 3x10(7) K), and beta approximately 10 plasma that included electron and ion beams streaming along B. The wave activity was enhanced from below the ion cyclotron frequency to electron cyclotron and upper hybrid frequencies. The detailed properties suggest the pulses are nonlinearly steepened ion cyclotron or Alfvén waves.

SELECTION OF CITATIONS
SEARCH DETAIL
...