Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 308(5724): 989-92, 2005 May 13.
Article in English | MEDLINE | ID: mdl-15890874

ABSTRACT

The Cassini Magnetospheric Imaging Instrument (MIMI) observed the interaction of Saturn's largest moon, Titan, with Saturn's magnetosphere during two close flybys of Titan on 26 October and 13 December 2004. The MIMI Ion and Neutral Camera (INCA) continuously imaged the energetic neutral atoms (ENAs) generated by charge exchange reactions between the energetic, singly ionized trapped magnetospheric ions and the outer atmosphere, or exosphere, of Titan. The images reveal a halo of variable ENA emission about Titan's nearly collisionless outer atmosphere that fades at larger distances as the exospheric density decays exponentially. The altitude of the emissions varies, and they are not symmetrical about the moon, reflecting the complexity of the interactions between Titan's upper atmosphere and Saturn's space environment.


Subject(s)
Saturn , Atmosphere , Extraterrestrial Environment , Ions , Magnetics , Spacecraft
2.
Science ; 307(5713): 1270-3, 2005 Feb 25.
Article in English | MEDLINE | ID: mdl-15731445

ABSTRACT

The Magnetospheric Imaging Instrument (MIMI) onboard the Cassini spacecraft observed the saturnian magnetosphere from January 2004 until Saturn orbit insertion (SOI) on 1 July 2004. The MIMI sensors observed frequent energetic particle activity in interplanetary space for several months before SOI. When the imaging sensor was switched to its energetic neutral atom (ENA) operating mode on 20 February 2004, at approximately 10(3) times Saturn's radius RS (0.43 astronomical units), a weak but persistent signal was observed from the magnetosphere. About 10 days before SOI, the magnetosphere exhibited a day-night asymmetry that varied with an approximately 11-hour periodicity. Once Cassini entered the magnetosphere, in situ measurements showed high concentrations of H+, H2+, O+, OH+, and H2O+ and low concentrations of N+. The radial dependence of ion intensity profiles implies neutral gas densities sufficient to produce high loss rates of trapped ions from the middle and inner magnetosphere. ENA imaging has revealed a radiation belt that resides inward of the D ring and is probably the result of double charge exchange between the main radiation belt and the upper layers of Saturn's exosphere.


Subject(s)
Gases , Ions , Magnetics , Saturn , Water , Atmosphere , Extraterrestrial Environment , Hydrogen , Nitrogen , Oxygen , Spacecraft , Spectrum Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...