Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Signal ; 17(844): eadn6052, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980922

ABSTRACT

Inhibitors of the transforming growth factor-ß (TGF-ß) pathway are potentially promising antifibrotic therapies, but nonselective simultaneous inhibition of all three TGF-ß homologs has safety liabilities. TGF-ß1 is noncovalently bound to a latency-associated peptide that is, in turn, covalently bound to different presenting molecules within large latent complexes. The latent TGF-ß-binding proteins (LTBPs) present TGF-ß1 in the extracellular matrix, and TGF-ß1 is presented on immune cells by two transmembrane proteins, glycoprotein A repetitions predominant (GARP) and leucine-rich repeat protein 33 (LRRC33). Here, we describe LTBP-49247, an antibody that selectively bound to and inhibited the activation of TGF-ß1 presented by LTBPs but did not bind to TGF-ß1 presented by GARP or LRRC33. Structural studies demonstrated that LTBP-49247 recognized an epitope on LTBP-presented TGF-ß1 that is not accessible on GARP- or LRRC33-presented TGF-ß1, explaining the antibody's selectivity for LTBP-complexed TGF-ß1. In two rodent models of kidney fibrosis of different etiologies, LTBP-49247 attenuated fibrotic progression, indicating the central role of LTBP-presented TGF-ß1 in renal fibrosis. In mice, LTBP-49247 did not have the toxic effects associated with less selective TGF-ß inhibitors. These results establish the feasibility of selectively targeting LTBP-bound TGF-ß1 as an approach for treating fibrosis.


Subject(s)
Extracellular Matrix , Fibrosis , Latent TGF-beta Binding Proteins , Transforming Growth Factor beta1 , Transforming Growth Factor beta1/metabolism , Animals , Humans , Latent TGF-beta Binding Proteins/metabolism , Latent TGF-beta Binding Proteins/antagonists & inhibitors , Extracellular Matrix/metabolism , Mice , Male , Kidney Diseases/metabolism , Kidney Diseases/pathology , Kidney Diseases/drug therapy , Disease Progression , Kidney/pathology , Kidney/metabolism , Kidney/drug effects , Mice, Inbred C57BL
2.
Sci Transl Med ; 12(536)2020 03 25.
Article in English | MEDLINE | ID: mdl-32213632

ABSTRACT

Despite breakthroughs achieved with cancer checkpoint blockade therapy (CBT), many patients do not respond to anti-programmed cell death-1 (PD-1) due to primary or acquired resistance. Human tumor profiling and preclinical studies in tumor models have recently uncovered transforming growth factor-ß (TGFß) signaling activity as a potential point of intervention to overcome primary resistance to CBT. However, the development of therapies targeting TGFß signaling has been hindered by dose-limiting cardiotoxicities, possibly due to nonselective inhibition of multiple TGFß isoforms. Analysis of mRNA expression data from The Cancer Genome Atlas revealed that TGFΒ1 is the most prevalent TGFß isoform expressed in many types of human tumors, suggesting that TGFß1 may be a key contributor to primary CBT resistance. To test whether selective TGFß1 inhibition is sufficient to overcome CBT resistance, we generated a high-affinity, fully human antibody, SRK-181, that selectively binds to latent TGFß1 and inhibits its activation. Coadministration of SRK-181-mIgG1 and an anti-PD-1 antibody in mice harboring syngeneic tumors refractory to anti-PD-1 treatment induced profound antitumor responses and survival benefit. Specific targeting of TGFß1 was also effective in tumors expressing more than one TGFß isoform. Combined SRK-181-mIgG1 and anti-PD-1 treatment resulted in increased intratumoral CD8+ T cells and decreased immunosuppressive myeloid cells. No cardiac valvulopathy was observed in a 4-week rat toxicology study with SRK-181, suggesting that selectively blocking TGFß1 activation may avoid dose-limiting toxicities previously observed with pan-TGFß inhibitors. These results establish a rationale for exploring selective TGFß1 inhibition to overcome primary resistance to CBT.


Subject(s)
Neoplasms , Transforming Growth Factor beta/antagonists & inhibitors , Animals , CD8-Positive T-Lymphocytes , Cardiotoxicity , Cell Line, Tumor , Humans , Mice , Neoplasms/drug therapy , Rats , Signal Transduction
3.
Antiviral Res ; 85(3): 470-81, 2010 Mar.
Article in English | MEDLINE | ID: mdl-19883694

ABSTRACT

Nucleoside analogs are effective inhibitors of the hepatitis C virus (HCV) in the clinical setting. One such molecule, 2'-C-methyl-cytidine (2'-MeC), entered clinical development as NM283, a valine ester prodrug form of 2'-MeC possessing improved oral bioavailability. To be active against HCV, 2'-MeC must be converted to 2'-MeC triphosphate which inhibits NS5B, the HCV RNA-dependent RNA polymerase. Conversion of 2'-MeC to 2'-MeC monophosphate is the first step in 2'-MeC triphosphate production and is thought to be the rate-limiting step. Here we investigate which of three possible enzymes, deoxycytidine kinase (dCK), uridine-cytidine kinase 1 (UCK1), or uridine-cytidine kinase 2 (UCK2), mediate this first phosphorylation step. Purified recombinant enzymes UCK2 and dCK, but not UCK1, could phosphorylate 2'-MeC in vitro. However, siRNA knockdown experiments in three human cell lines (HeLa, Huh7 and HepG2) defined UCK2 and not dCK as the key kinase for the formation of 2'-MeC monophosphate in cultured human cells. These results underscore the importance of confirming enzymatic kinase data with appropriate cell-based assays. Finally, we present data suggesting that inefficient phosphorylation by UCK2 likely limits the antiviral activity of 2'-MeC against HCV. This paves the way for the use of a nucleotide prodrug approach to overcome this limitation.


Subject(s)
Antiviral Agents/metabolism , Cytidine Monophosphate/metabolism , Cytidine/analogs & derivatives , Deoxycytidine Kinase/metabolism , Prodrugs/metabolism , Uridine Kinase/metabolism , Biotransformation , Cell Line , Cytidine/metabolism , Cytidine Monophosphate/analogs & derivatives , Deoxycytidine Kinase/genetics , Deoxycytidine Kinase/isolation & purification , Gene Silencing , Hepacivirus/drug effects , Humans , RNA, Small Interfering/genetics , Uridine Kinase/genetics , Uridine Kinase/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...