Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Contrib Mineral Petrol ; 179(7): 69, 2024.
Article in English | MEDLINE | ID: mdl-38898919

ABSTRACT

Rutile inclusions in almandine-spessartine garnet from a peraluminous pegmatoid from the Moldanubian zone (Bohemian Massif, AT) show distinct changes in aspect ratio, shape preferred orientations (SPO) and crystallographic orientation relationships (COR) along the transition between microstructurally different growth zones in the garnet core and rim. For identification of the COR characteristics we pool specific CORs based on their common axial relationship into three COR groups: Group 103R/111G, Group 001R/111G and Group 001R/100G. The rutile inclusions in the garnet core domains are elongated along the four Grt ⟨ 111 ⟩ directions and are dominated by COR Group 103R/111G. The garnet rim zone additionally contains rutile needles elongated along Grt ⟨ 100 ⟩ . Here, Group 001R/111G and 001R/100G are more abundant than in the garnet core. Needle-shaped rutile in the rim shows a systematic correlation between SPOs and CORs as needles elongated parallel to Grt ⟨ 111 ⟩ are dominated by Group 103R/111G and 001R/111G, whereas those needles elongated parallel to Grt ⟨ 100 ⟩ exclusively pertain to CORs of 001R/100G. Furthermore, the frequency of each particular SPO in the garnet rim clearly depends on the local growth direction of the particular Grt{112} sector. Facet-specific variations in rutile SPO frequencies in different sectors and growth zones of garnet were observed even between equivalent directions, indicating that the microstructures and textures of rutile inclusions reflect varying parameters of garnet growth. The characteristic differences in COR groups of different garnet growth zones are referred to compositional changes in the bulk melt or compositional boundary layer, associated with magmatic fractional crystallisation. Supplementary Information: The online version contains supplementary material available at 10.1007/s00410-024-02146-9.

2.
ACS Nano ; 18(16): 10850-10862, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38591990

ABSTRACT

Lithium lanthanum titanate (LLTO) perovskite is one of the most promising electrolytes for all-solid-state batteries, but its performance is limited by the presence of grain boundaries (GBs). The fraction of GBs can be significantly reduced by the preparation of coarse-grained LLTO ceramics. In this work, we describe an alternative approach to the fabrication of ceramics with large LLTO grains based on self-seeded grain growth. In compositions with the starting stoichiometry for the Li0.20La0.60TiO3 phase and with a high excess addition of Li (Li:La:Ti = 11:15:25), microstructure development starts with the formation of the layered RP-type Li2La2Ti3O10 phase. Grains with many RP-type defects initially develop into large platelets with thicknesses of up to 10 µm and lengths over 100 µm. Microstructure development continues with the crystallization of LLTO perovskite, epitaxially on the platelets and as smaller grains with thinner in-grain RP-lamellae. Theoretical calculations confirmed that the formation of RP-type sequences is energetically favored and precedes the formation of the LLTO perovskite phase. At around 1250 °C, the RP-type sequences become thermally unstable and gradually recrystallize to LLTO via the ionic exchange between the Li-rich RP-layers and the neighboring Ti and La layers as shown by quantitative HAADF-STEM. At higher sintering temperatures, LLTO grains become free of RP-type defects and the small grains recrystallize onto the large platelike seed grains via Ostwald ripening. The final microstructure is coarse-grained LLTO with total ionic conductivity in the range of 1 × 10-4 S/cm.

3.
Proc Natl Acad Sci U S A ; 121(6): e2311738121, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38300859

ABSTRACT

It is generally accepted that aragonite crystals of biogenic origin are characterized by significantly higher twin densities compared to samples formed during geological processes. Based on our single crystal X-ray diffraction (SCXRD) and transmission electron microscopy (TEM) study of aragonite crystals from various localities, we show that in geological aragonites, the twin densities are comparable to those of the samples from crossed lamellar zones of molluscs shells. The high twin density is consistent with performed calculations, according to which the Gibbs free energy of twin-free aragonite is close to that of periodically twinned aragonite structure. In some cases, high twin densities result in the appearance of diffuse scattering in SCXRD patterns. The obtained TEM and optical micrographs show that besides the twin boundaries (TBs) of growth origin, there are also TBs and especially stacking faults that were likely formed as the result of local strain compensation. SCXRD patterns of the samples from Tazouta, in addition to diffuse scattering lines, show Debye arcs in the [Formula: see text] plane. These Debye arcs are present only on one side of the Bragg reflections and have an azimuthal extent of nearly 30°, making the whole symmetry of the diffraction pattern distinctly chiral, which has not yet been reported for aragonite. By analogy with biogenic calcite crystals, we associate these arcs with the presence of misoriented subgrains formed as a result of crystal twisting during growth.

4.
Phys Chem Chem Phys ; 25(45): 31125-31136, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37947379

ABSTRACT

In this study, the properties of the natural mineral chalcopyrite CuFeS2 after mechanical activation in a planetary mill were studied. The intensity of mechanical activation was controlled by changing the revolutions of the mill in the range 100-600 min-1. A series of characterization techniques, such as XRD, SEM, TEM, TA (DTA, TG, and DTG), particle size analysis, and UV-vis spectroscopy was applied and reactivity studies were also performed. Several new features were revealed for the mechanically activated chalcopyrite, e.g. the poly-modal distribution of produced nanoparticles on the micrometer scale, agglomeration effects by prolonged milling, possibility to modify the shape of the particles, X-ray amorphization and a shift from a non-cubic (tetragonal) structure to pseudo-cubic structure. The thermoelectric response was evaluated on the "softly" compacted powder via the spark plasma sintering method (very short holding time, low sintering temperature, and moderate pressure) by measuring the Seebeck coefficient and electrical and thermal conductivity above room temperature. The milling process produced samples with lower resistivity compared to the original non-activated sample. The Seebeck data close to zero confirmed the "compensated" character of natural chalcopyrite, reflecting its close-to stoichiometric composition with low concentration of both n- and p-type charge carriers. Alternatively, an evident correlation between thermal conductivity and energy supply by milling was observed with the possibility of band gap manipulation, which is associated with the energy delivered by the milling procedure.

5.
Nanoscale Adv ; 5(11): 3005-3017, 2023 May 30.
Article in English | MEDLINE | ID: mdl-37260496

ABSTRACT

The engineering of epitaxial, two-dimensional (2D) nano-heterostructures has stimulated great interest owing to an expectation of better functional properties (e.g., photocatalytic, piezoelectric). Hydrothermal topotactic epitaxy is one of the promising synthetic approaches for their preparation, particularly the formation of a highly ordered, epitaxial interface and possibilities for the preparation of anisotropic nanostructures of symmetrical materials. The present study highlights the key parameters when steering the alkaline, hydrothermal, topochemical conversion process from Bi4Ti3O12 nanoplatelets to the intermediate, epitaxial, SrTiO3/Bi4Ti3O12 nano-heterostructures and the final SrTiO3 nanoplatelets by balancing the lattice mismatch and the supersaturation. An atomic-scale examination revealed the formation of an ordered epitaxial SrTiO3/Bi4Ti3O12 interface with the presence of dislocations. The SrTiO3 grows in islands for a stoichiometric amount of Sr (Sr/Ti = 1) and the growth resembles a layer-by-layer mode for surplus Sr content (Sr/Ti ≥ 12). The latter enables SrTiO3 overgrowth of the Bi4Ti3O12 basal surface planes, protecting them against dissolution from the top and consequently ensuring the preservation of the platelet morphology during the entire transformation process, the kinetics of which is controlled by the base concentration. A developed understanding of this particular transformation provides the guiding principles and ideas for designing other defined or complex epitaxial heterostructures and structures under low-temperature hydrothermal conditions.

6.
Life (Basel) ; 13(2)2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36836930

ABSTRACT

Silver nanoparticles (Ag NPs) with antibacterial activity can be prepared in different ways. In our case, we used ecological green synthesis with Agrimonia eupatoria L. The plant extract was used with Ag NPs for the first time to prepare termosensitive in situ gels (ISGs). Such gels are used to heal human or animal skin and mucous membranes, as they can change from a liquid to solid state after application. Ag NPs were characterized with various techniques (FTIR, TEM, size distribution, zeta potential) and their antibacterial activity was tested against Staphylococcus aureus and Escherichia coli. In accordance with the TEM data, we prepared monodispersed spherical Ag NPs with an average size of about 20 nm. Organic active compounds from Agrimonia eupatoria L. were found on their surfaces using FTIR spectroscopy. Surprisingly, only the in situ gel with Ag NPs showed antibacterial activity against Escherichia coli, while Ag NPs alone did not. Ag NPs prepared via green synthesis using plants with medicinal properties and incorporated into ISGs have great potential for wound healing due to the antibacterial activity of Ag NPs and the dermatological activity of organic substances from plants.

7.
Faraday Discuss ; 241(0): 367-386, 2023 01 05.
Article in English | MEDLINE | ID: mdl-36193820

ABSTRACT

An effort to prepare different non-stoichiometric CuxSy compounds starting from elemental precursors using mechanochemistry was made in this study. However, out of the 7 stoichiometries tested, it was only possible to obtain three phases: covellite CuS, chalcocite Cu2S and digenite Cu1.8S and their mixtures. To obtain the digenite phase with the highest purity, the Cu : S stoichiometric ratio needed to be fixed at 1.6 : 1. The reaction between copper and sulfur was completed within a second range, however, milling was performed for up to 15 minutes until the equilibrium in phase composition between digenite and covellite was reached. The possibility of preparing the product in a 300 g batch by eccentric vibratory milling in 30 minutes was successfully verified at the end. The estimated crystallite sizes for the digenite Cu1.8S obtained via lab-scale and scalable experiments were around 12 and 17 nm, respectively. The obtained products were found to be efficient photocatalysts under visible light irradiation in the presence of hydrogen peroxide, being capable of the complete degradation of the Methyl Orange dye in a concentration of 10 mg L-1 in 2 hours. Finally, the antibacterial potential of both lab-scale and large-scale industrial products was proven and, regardless of the manufacturing scale, the nanoparticles retained their properties against bacterial cells.


Subject(s)
Copper , Nanoparticles , Copper/chemistry , Anti-Bacterial Agents/pharmacology , Nanoparticles/chemistry , Sulfides/chemistry
8.
Materials (Basel) ; 15(19)2022 Oct 05.
Article in English | MEDLINE | ID: mdl-36234253

ABSTRACT

CuFeS2/TiO2 nanocomposite has been prepared by a simple, low-cost mechanochemical route to assess its visible-light-driven photocatalytic efficiency in Methyl Orange azo dye decolorization. The structural and microstructural characterization was studied using X-ray diffraction and high-resolution transmission electron microscopy. The presence of both components in the composite and a partial anatase-to-rutile phase transformation was proven by X-ray diffraction. Both components exhibit crystallite size below 10 nm. The crystallite size of both phases in the range of 10-20 nm was found and confirmed by TEM. Surface and morphological properties were characterized by scanning electron microscopy and nitrogen adsorption measurement. Scanning electron microscopy has shown that the nanoparticles are agglomerated into larger grains. The specific surface area of the nanocomposite was determined to be 21.2 m2·g-1. Optical properties using UV-Vis and photoluminescence spectroscopy were also investigated. CuFeS2/TiO2 nanocomposite exhibits strong absorption with the determined optical band gap 2.75 eV. Electron paramagnetic resonance analysis has found two types of paramagnetic ions in the nanocomposite. Mössbauer spectra showed the existence of antiferromagnetic and paramagnetic spin structure in the nanocomposite. The CuFeS2/TiO2 nanocomposite showed the highest discoloration activity with a MO conversion of ~ 74% after 120 min irradiation. This study has shown the possibility to prepare nanocomposite material with enhanced photocatalytic activity of decoloration of MO in the visible range by an environmentally friendly manner.

9.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 78(Pt 4): 695-709, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35975835

ABSTRACT

Contact and multiple cyclic twins of cassiterite commonly form in SnO2-based ceramics when SnO2 is sintered with small additions of cobalt and niobium oxides (dual doping). In this work, it is shown that the formation of twins is a two-stage process that starts with epitaxial growth of SnO2 on CoNb2O6 and Co4Nb2O9 seeds (twin nucleation stage) and continues with the fast growth of (101) twin contacts (twin growth stage). Both secondary phases form below the temperature of enhanced densification and SnO2 grain growth; CoNb2O6 forms at ∼700°C and Co4Nb2O9 at ∼900°C. They are structurally related to the rutile-type cassiterite and can thus trigger oriented (epitaxial) growth (local recrystallization) of SnO2 domains in different orientations on a single seed particle. While oriented growth of cassiterite on columbite-type CoNb2O6 grains can only result in the formation of contact twins, the Co4Nb2O9 grains with a structure comparable with that of corundum represent suitable sites for the nucleation of contact and multiple cyclic twins with coplanar or alternating morphology. The twin nucleation stage is followed by fast densification accompanied by significant SnO2 grain growth above 1300°C. The twin nuclei coarsen to large twinned grains as a result of the preferential and fast growth of the low-energy (101) twin contacts. The solid-state diffusion processes during densification and SnO2 grain growth are controlled by the formation of point defects and result in the dissolution of the twin nuclei and the incorporation of Nb5+ and Co2+ ions into the SnO2 matrix in the form of a solid solution. In this process, the twin nuclei are erased and their role in the formation of twins is shown only by irregular segregation of Co and Nb to the twin boundaries and inside the cassiterite grains, and Co,Nb-enrichment in the cyclic twin cores.

10.
Nanomaterials (Basel) ; 12(8)2022 Apr 07.
Article in English | MEDLINE | ID: mdl-35457958

ABSTRACT

CdS nanoparticles were successfully synthesized using cadmium acetate and sodium sulfide as Cd and S precursors, respectively. The effect of using sodium thiosulfate as an additional sulfur precursor was also investigated (combined milling). The samples were characterized by XRD, Raman spectroscopy, XPS, UV-Vis spectroscopy, PL spectroscopy, DLS, and TEM. Photocatalytic activities of both CdS samples were compared. The photocatalytic activity of CdS, which is produced by combined milling, was superior to that of CdS, and was obtained by an acetate route in the degradation of Orange II under visible light irradiation. Better results for CdS prepared using a combined approach were also evidenced in photocatalytic experiments on hydrogen generation. The antibacterial potential of mechanochemically prepared CdS nanocrystals was also tested on reference strains of E. coli and S. aureus. Susceptibility tests included a 24-h toxicity test, a disk diffusion assay, and respiration monitoring. Bacterial growth was not completely inhibited by the presence of neither nanomaterial in the growth environment. However, the experiments have confirmed that the nanoparticles have some capability to inhibit bacterial growth during the logarithmic growth phase, with a more substantial effect coming from CdS nanoparticles prepared in the absence of sodium thiosulfate. The present research demonstrated the solvent-free, facile, and sustainable character of mechanochemical synthesis to produce semiconductor nanocrystals with multidisciplinary application.

11.
Front Chem ; 10: 836795, 2022.
Article in English | MEDLINE | ID: mdl-35242741

ABSTRACT

The biocompatible nanosuspension of CuS nanoparticles (NPs) using bovine serum albumin (BSA) as a capping agent was prepared using a two-stage mechanochemical approach. CuS NPs were firstly synthetized by a high-energy planetary ball milling in 15 min by milling elemental precursors. The stability of nanoparticles in the simulated body fluids was studied, revealing zero copper concentration in the leachates, except simulated lung fluid (SLF, 0.015%) and simulated gastric fluid (SGF, 0.078%). Albumin sorption on CuS NPs was studied in static and dynamic modes showing a higher kinetic rate for the dynamic mode. The equilibrium state of adsorption was reached after 90 min with an adsorption capacity of 86 mg/g compared to the static mode when the capacity 59 mg/g was reached after 2 h. Then, a wet stirred media milling in a solution of BSA was introduced to yield the CuS-BSA nanosuspension, being stable for more than 10 months, as confirmed by photon cross-correlation spectroscopy. The fluorescent properties of the nanosuspension were confirmed by photoluminescence spectroscopy, which also showed that tryptophan present in the BSA could be closer to the binding site of CuS than the tyrosine residue. The biological activity was determined by in vitro tests on selected cancer and non-tumor cell lines. The results have shown that the CuS-BSA nanosuspension inhibits the metabolic activity of the cells as well as decreases their viability upon photothermal ablation.

12.
Nanomaterials (Basel) ; 11(6)2021 May 25.
Article in English | MEDLINE | ID: mdl-34070243

ABSTRACT

In this study, we demonstrate the feasibility of Bi-doped tetrahedrite Cu12Sb4-xBixS13 (x = 0.02-0.20) synthesis in an industrial eccentric vibratory mill using Cu, Sb, Bi and S elemental precursors. High-energy milling was followed by spark plasma sintering. In all the samples, the prevailing content of tetrahedrite Cu12Sb4S13 (71-87%) and famatinite Cu3SbS4 (13-21%), together with small amounts of skinnerite Cu3SbS3, have been detected. The occurrence of the individual Cu-Sb-S phases and oxidation states of bismuth identified as Bi0 and Bi3+ are correlated. The most prominent effect of the simultaneous milling and doping on the thermoelectric properties is a decrease in the total thermal conductivity (κ) with increasing Bi content, in relation with the increasing amount of famatinite and skinnerite contents. The lowest value of κ was achieved for x = 0.2 (1.1 W m-1 K-1 at 675 K). However, this sample also manifests the lowest electrical conductivity σ, combined with relatively unchanged values for the Seebeck coefficient (S) compared with the un-doped sample. Overall, the lowered electrical performances outweigh the benefits from the decrease in thermal conductivity and the resulting figure-of-merit values illustrate a degradation effect of Bi doping on the thermoelectric properties of tetrahedrite in these synthesis conditions.

13.
Nanomaterials (Basel) ; 11(4)2021 Apr 14.
Article in English | MEDLINE | ID: mdl-33919801

ABSTRACT

A green synthetic route for the production of silver nanoparticles (AgNPs) using five different aqueous plant extracts, namely, Berberis vulgaris, Brassica nigra, Capsella bursa-pastoris, Lavandula angustifolia and Origanum vulgare, was investigated in this study. The present work demonstrates the influence of plant extract composition (antioxidant and total phenolic content) on the size and morphology of the produced AgNPs. The biosynthetic procedure was rapid and simple and was easily monitored via colour changes and ultraviolet and visible (UV-Vis) spectroscopy. Subsequently, measurement of zeta potential (ZP), photon cross-correlation spectroscopy (PCCS), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and selected area electron diffraction (SAED) analysis were employed to characterise the as-synthesised nanoparticles. The XRD investigation confirmed the presence of Ag0 in the nanoparticles, and interactions between the bioactive compounds of the plants and the produced AgNPs were evident in the FTIR spectra. TEM indicated that the nanoparticles exhibited a bimodal size distribution, with the smaller particles being spherical and the larger having a truncated octahedron shape. In addition, the antimicrobial activity of the AgNPs was tested against five bacterial strains. All synthesised nanoparticles exhibited enhanced antimicrobial activity at a precursor concentration of 5 mM compared to the control substance, gentamicin sulphate, with the best results observed for AgNPs prepared with B. nigra and L. angustifolia extracts.

14.
Nanomaterials (Basel) ; 11(5)2021 Apr 28.
Article in English | MEDLINE | ID: mdl-33924877

ABSTRACT

This study shows mechanochemical synthesis as an alternative method to the traditional green synthesis of silver nanoparticles in a comparative manner by comparing the products obtained using both methodologies and different characterization methods. As a silver precursor, the most commonly used silver nitrate was applied and the easily accessible lavender (Lavandula angustofolia L.) plant was used as a reducing agent. Both syntheses were performed using 7 different lavender:AgNO3 mass ratios. The synthesis time was limited to 8 and 15 min in the case of green and mechanochemical synthesis, respectively, although a significant amount of unreacted silver nitrate was detected in both crude reaction mixtures at low lavender:AgNO3 ratios. This finding is of particular interest mainly for green synthesis, as the potential presence of silver nitrate in the produced nanosuspension is often overlooked. Unreacted AgNO3 has been removed from the mechanochemically synthesized samples by washing. The nanocrystalline character of the products has been confirmed by both X-ray diffraction (Rietveld refinement) and transmission electron microscopy. The latter has shown bimodal size distribution with larger particles in tens of nanometers and the smaller ones below 10 nm in size. In the case of green synthesis, the used lavender:AgNO3 ratio was found to have a decisive role on the crystallite size. Silver chloride has been detected as a side-product, mainly at high lavender:AgNO3 ratios. Both products have shown a strong antibacterial activity, being higher in the case of green synthesis, but this can be ascribed to the presence of unreacted AgNO3. Thus, one-step mechanochemical synthesis (without the need to prepare extract and performing the synthesis as separate steps) can be applied as a sustainable alternative to the traditional green synthesis of Ag nanoparticles using plants.

15.
Mater Sci Eng C Mater Biol Appl ; 119: 111640, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33321678

ABSTRACT

Lichens dispose a wide spectrum of bioactive compounds known as secondary metabolites. Their biological effects like antioxidant and antibacterial activities are widely studied. Green synthesis of silver nanoparticles (AgNPs) is a method where the compounds/substances present in plants are used for reduction of AgNO3instead of toxic chemicals. However, this methodology is usually a two-step process (extract preparation step and the synthesis step) performed under the elevated temperatures nad in the case of lichens, the redicing compounds are insoluble in water. These disadvantages can be overcome by a solid-state mechanochemical synthesis applied in the present study. As microorganisms are becoming more resistant to commercial antibiotics, AgNPs prepared in an environmentally friendly way represent an interesting alternative. In the present study, we compared the processing of lichen material of Pseudevernia furfuracea and Lobaria pulmonaria for extraction as well as for synthesis of AgNPs, and tested the antibacterial and antioxidant activity of the extracts. Both selected lichen species could be successfully used as reducing agents to produce AgNPs. Six different bacterial strains were tested for antibacterial activity of AgNPs-containing products and it was highly effective on all strains. However, the antioxidant activity of lichen extracts showed the lowest effect even if AgNPs are present which positively correlated with the content of total phenols and flavonoids. Both phenols and flavonoids are natural antioxidants and react with silver nitrate. Due to this fact, we observed a decrease of total phenols, total flavonoids as well as antioxidant activity when processing of lichen extracts with silver nitrate was used. We demonstrated that the formation of AgNPs increased the antibacterial activity but on the other hand reduced the antioxidant activity. Thus, antibacterial and antioxidant effects have to be treated differentially.


Subject(s)
Lichens , Metal Nanoparticles , Anti-Bacterial Agents/pharmacology , Antioxidants/pharmacology , Ascomycota , Green Chemistry Technology , Microbial Sensitivity Tests , Parmeliaceae , Plant Extracts/pharmacology , Silver/pharmacology
16.
ACS Appl Mater Interfaces ; 13(1): 370-381, 2021 Jan 13.
Article in English | MEDLINE | ID: mdl-33351589

ABSTRACT

Low-temperature hydrothermal epitaxial growth and topochemical conversion (TC) reactions offer unexploited possibilities for the morphological engineering of heterostructural and non-equilibrium shape (photo)catalyst particles. The hydrothermal epitaxial growth of SrTiO3 on Bi4Ti3O12 platelets is studied as a new route for the formation of novel nanoheterostructural SrTiO3/Bi4Ti3O12 platelets at an intermediate stage or (100)-oriented mesocrystalline SrTiO3 nanoplatelets at the completed stage of the TC reaction. The Bi4Ti3O12 platelets act as a source of Ti(OH)62- species and, at the same time, as a substrate for the epitaxial growth of SrTiO3. The dissolution of the Bi4Ti3O12 platelets proceeds faster from the lateral direction, whereas the epitaxial growth of SrTiO3 occurs on both bismuth-oxide-terminated basal surface planes of the Bi4Ti3O12 platelets. In the progress of the TC reaction, the Bi4Ti3O12 platelet is replaced from the lateral ends toward the interior by SrTiO3, while Bi4Ti3O12 is preserved in the core of the heterostructural platelet. Without any support from noble-metal doping or cocatalysts, the SrTiO3/Bi4Ti3O12 platelets show stable and 15 times higher photocatalytic H2 production (1265 µmol·g-1·h-1; solar-to-hydrogen (STH) efficiency = 0.19%) than commercial SrTiO3 nanopowders (81 µmol·g-1·h-1; STH = 0.012%) in pH-neutral water/methanol solutions. A plausible Z scheme is proposed to describe the charge-transfer mechanism during the photocatalysis.

17.
RSC Adv ; 11(3): 1222-1232, 2021 Jan 04.
Article in English | MEDLINE | ID: mdl-35424096

ABSTRACT

Controlling the growth of complex relaxor ferroelectric thin films and understanding the relationship between biaxial strain-structural domain characteristics are desirable for designing materials with a high electromechanical response. For this purpose, epitaxial thin films free of extended defects and secondary phases are urgently needed. Here, we used optimized growth parameters and target compositions to obtain epitaxial (40-45 nm) 0.67Pb(Mg1/3Nb2/3)O3-0.33PbTiO3/(20 nm) SrRuO3 (PMN-33PT/SRO) heterostructures using pulsed-laser deposition (PLD) on singly terminated SrTiO3 (STO) and ReScO3 (RSO) substrates with Re = Dy, Tb, Gd, Sm, and Nd. In situ reflection high-energy electron diffraction (RHEED) and high-resolution X-ray diffraction (HR-XRD) analysis confirmed high-quality and single-phase thin films with smooth 2D surfaces. High-resolution scanning transmission electron microscopy (HR-STEM) revealed sharp interfaces and homogeneous strain further confirming the epitaxial cube-on-cube growth mode of the PMN-33PT/SRO heterostructures. The combined XRD reciprocal space maps (RSMs) and piezoresponse force microscopy (PFM) analysis revealed that the domain structure of the PMN-33PT heterostructures is sensitive to the applied compressive strain. From the RSM patterns, an evolution from a butterfly-shaped diffraction pattern for mildly strained PMN-33PT layers, which is evidence of stabilization of relaxor domains, to disc-shaped diffraction patterns for high compressive strains with a highly distorted tetragonal structure, is observed. The PFM amplitude and phase of the PMN-33PT thin films confirmed the relaxor-like for a strain state below ∼1.13%, while for higher compressive strain (∼1.9%) the irregularly shaped and poled ferroelectric domains were observed. Interestingly, the PFM phase hysteresis loops of the PMN-33PT heterostructures grown on the SSO substrates (strain state of ∼0.8%) exhibited an enhanced coercive field which is about two times larger than that of the thin films grown on GSO and NSO substrates. The obtained results show that epitaxial strain engineering could serve as an effective approach for tailoring and enhancing the functional properties in relaxor ferroelectrics.

18.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 76(Pt 5): 875-883, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-33017320

ABSTRACT

Electron backscatter diffraction (EBSD) was used for the analysis of multiple cyclic twins in cassiterite (SnO2), which form during sintering of SnO2 with small additions of CoO and Nb2O5. Grain misorientation analysis has shown that about one third of all grains contain {101} twin boundaries (TBs). The majority of these grains are contact twins, whereas a small fraction of grains are multiple, mainly cyclic twins. A procedure was developed in MTEX [Bachmann, Hielscher & Schaeben (2010). Solid State Phenom. 160, 63-88] for automated identification of crystallographically different types of cyclic twins and found two main types: coplanar twins composed of three or four domains with a common [010] axis and alternating twins composed of three to seven domains oriented along the [111] axis. Both types of cyclic twins have a characteristic common origin (nucleus) of all TBs, which is positioned eccentric relative to the grain section and the cycle is closed with a shorter non-crystallographic contact between the first and the last twin domain. The morphology of cyclic twins suggests that they form by nucleation in the initial stages of grain growth. The average size of twinned grains increases with the number of twin domains indicating the influence of TBs formation on the growth of composite grains.


Subject(s)
Ceramics/chemistry , Cobalt/chemistry , Niobium/chemistry , Oxides/chemistry , Tin Compounds/chemistry , Electrons
19.
Nanomaterials (Basel) ; 10(11)2020 Oct 25.
Article in English | MEDLINE | ID: mdl-33113789

ABSTRACT

A combination of solid-state mechanochemical and green approaches for the synthesis of silver nanoparticles (AgNPs) is explored in this study. Thymus serpyllum L. (SER), Sambucus nigra L. (SAM) and Thymus vulgaris L. (TYM) plants were successfully applied to reduce AgNO3 to AgNPs, as confirmed by X-ray diffraction analysis, with SER being the best reducing agent, and TYM being the worst. The experiments were performed via a one-step planetary milling process, where various AgNO3:plant mass ratios (1:1, 1:10, 1:50 and 1:100) were investigated. Atomic absorption spectrometry indicated that the stability of the mechanochemically produced AgNPs increased markedly when a sufficiently large quantity of the reducing plant was used. Furthermore, when larger quantities of plant material were employed, the crystallite size of the AgNPs decreased. TEM analysis revealed that all AgNPs produced from both AgNO3:plant ratios 1:1 and 1:10 exhibit the bimodal size distribution with the larger fraction with size in tens of nm and the smaller one below 10 nm in size. The antibacterial activity of the produced AgNPs was observed only for AgNO3:plant ratio 1:1, with the AgNPs prepared using SER showing the greatest antibacterial properties.

20.
Nanomaterials (Basel) ; 11(1)2020 Dec 30.
Article in English | MEDLINE | ID: mdl-33396849

ABSTRACT

The CuInSe2/ZnS multiparticulate nanocomposites were first synthesized employing two-step mechanochemical synthesis. In the first step, tetragonal CuInSe2 crystals prepared from copper, indium and selenium precursors were co-milled with zinc acetate dihydrate and sodium sulfide nonahydrate as precursors for ZnS in different molar ratios by mechanochemical route in a planetary mill. In the second step, the prepared CuInSe2/ZnS nanocrystals were further milled in a circulation mill in sodium dodecyl sulphate (SDS) solution (0.5 wt.%) to stabilize the synthesized nanoparticles. The sodium dodecyl sulphate capped CuInSe2/ZnS 5:0-SDS nanosuspension was shown to be stable for 20 weeks, whereas the CuInSe2/ZnS 4:1-SDS one was stable for about 11 weeks. After sodium dodecyl sulphate capping, unimodal particle size distribution was obtained with particle size medians approaching, respectively, 123 nm and 188 nm for CuInSe2/ZnS 5:0-SDS and CuInSe2/ZnS 4:1-SDS nanocomposites. Successful stabilization of the prepared nanosuspensions due to sodium dodecyl sulphate covering the surface of the nanocomposite particles was confirmed by zeta potential measurements. The prepared CuInSe2/ZnS 5:0-SDS and CuInSe2/ZnS 4:1-SDS nanosuspensions possessed anti-myeloma sensitizing potential assessed by significantly reduced viability of multiple myeloma cell lines, with efficient fluorescence inside viable cells and higher cytotoxic efficacy in CuInSe2/ZnS 4:1-SDS nanosuspension.

SELECTION OF CITATIONS
SEARCH DETAIL
...