Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bioresour Technol ; 388: 129762, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37716571

ABSTRACT

Efficient removal of organic arsenic (roxarsone, ROX) from wastewater is highly demanded on the purpose of human health and environmental protection. This work aims to prepare Fe-N co-doped biochar (Fe-N-BC) via one-pot hydrothermal method using waste peanut shell, FeCl3·6H2O and urea, followed by pyrolysis. The effect of Fe-N co-doping on biochar's physicochemical properties, and adsorption performance for ROX were systematically investigated. At the pyrolysis temperature of 650 °C, Fe-N-BC-650 shows a significantly increased specific surface area of 358.53 m2/g with well-developed micro-mesoporous structure. Its adsorption capacity for ROX reaches as high as 197.32 mg/g at 25 °C, with > 90 % regeneration efficiency after multiple adsorption-desorption cycles. Correlation and spectral analysis revealed that the pore filling, π-π interactions, as well as hydrogen bonding play the dominant role in ROX adsorption. These results suggest that the Fe-N co-doped biochar shows great potential in the ROX removal from wastewater with high efficiency.

2.
J Colloid Interface Sci ; 650(Pt A): 132-142, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37399749

ABSTRACT

Converting CO2 into valuable chemicals and fuels through clean and renewable energy electricity provides a way to achieve sustainable development for human societies. In this study, carbon coated nickel catalysts (Ni@NCT) were prepared by solvothermal and high-temperature pyrolysis methods. A series of Ni@NC-X catalysts were obtained by pickling with different kinds of acids for electrochemical CO2 reduction reaction (ECRR). The results show that Ni@NC-N treated with nitric acid has the highest selectivity but lower activity, Ni@NC-S treated with sulfuric acid has the lowest selectivity, and Ni@NC-Cl treated with hydrochloric acid shows the best activity and good selectivity. At -1.16 V, Ni@NC-Cl has a considerable CO yield of 472.9 µmol h-1 cm-2, which is significantly superior to Ni@NC-N (327.5), Ni@NC-S (295.6) and Ni@NC (270.8). The controlled experiments show that there is a synergistic effect between Ni and N. The chlorine adsorbed on the surface can promote the performance of ECRR. The poisoning experiments indicate that the contribution of surface Ni atoms to the ECRR is very small, and the increase of activity is mainly due to the nitrogen doped carbon coated Ni particles. The relationship between activity and selectivity of ECRR on different acid-washed catalysts was correlated by theoretical calculations for the first time, which is also in good agreement with the experimental results.

SELECTION OF CITATIONS
SEARCH DETAIL
...