Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Hortic Res ; 11(6): uhae096, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38855415

ABSTRACT

Cold stress significantly limits the yield and quality of tomato. Deciphering the key genes related to cold tolerance is important for selecting and breeding superior cold-tolerant varieties. γ-aminobutyric acid (GABA) responds to various types of stress by rapidly accumulating in plant. In this study, glutamic acid decarboxylase (GAD2) was a positive regulator to enhance cold stress tolerance of tomato. Overexpression of SlGAD2 decreased the extent of cytoplasmic membrane damage and increased the endogenous GABA content, antioxidant enzyme activities, and reactive oxygen species (ROS) scavenging capacity in response to cold stress, whereas Slgad2 mutant plants showed the opposite trend. In addition, SlGAD2 induced anthocyanin biosynthesis in response to cold stress by increasing the content of endogenous GABA. Further study revealed that SlGAD2 expression was negatively regulated by the transcription factor SlTHM27. However, the transcript levels of SlTHM27 were repressed under cold stress. Antioxidant enzyme activities, SlGAD2 transcript levels, GABA and anthocyanin contents were significantly increased in Slthm27 mutant plants. Further, our study demonstrated that SlTHM27 decreases SlGAD2-promoted cold resistance in tomato by repressing SlGAD2 transcription. Overall, our results showed that the SlTHM27-SlGAD2 model regulates the cold tolerance in tomato by regulating GABA and anthocyanin.

2.
Antioxidants (Basel) ; 11(9)2022 Aug 27.
Article in English | MEDLINE | ID: mdl-36139748

ABSTRACT

Basic leucine zipper (bZIP) transcription factors of the ABA-responsive element binding factor/ABA-responsive element binding proteins (ABF/AREB) subfamily have been implicated in abscisic acid (ABA) and abiotic stress responses in plants. However, the specific function of ABF/AREB transcription factors under saline-alkaline stress is unclear. Here, we identified four ABF/AREB transcription factors in tomato and found that SlAREB1 strongly responded to both ABA and saline-alkaline stress. To further explore the function of SlAREB1 under saline-alkaline stress, SlAREB1-overexpressing lines were constructed. Compared with wild-type plants, SlAREB1-overexpressing transgenic tomato plants showed reduced malondialdehyde content, increased the relative water content, and alleviated the degradation of chlorophyll under saline-alkaline stress. Importantly, SlAREB1 directly physically interacted with SlMn-SOD, which improved the activity of antioxidant enzymes and increased the scavenging of excess reactive oxygen species. Overall, the overexpression of SlAREB1 increased the antioxidant capacity of the transgenic tomato under saline-alkaline stress.

SELECTION OF CITATIONS
SEARCH DETAIL
...