Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Colloids Surf B Biointerfaces ; 204: 111812, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34020317

ABSTRACT

Attachment of human adenovirus 40 (HAdV40) onto surfaces coated with three compositionally different household paints was evaluated experimentally and interpreted based on measured physicochemical properties of the paints. Polar, dispersive and electrostatic interactions between HAdV40 and the paints were predicted using the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) model. Quartz crystal microbalance (QCM-D) was used to quantify virus attachment to paints from 1 mM and 150 mM NaCl solutions, with the latter having the ionic strength of a typical respiratory fluid. Acrylic latex water-based, alkyd water-based, and alkyd oil-based paints were all determined to be highly hydrophobic (ΔGsws < - 48 mJ/m2). XDLVO modeling and preliminary QCM-D tests evaluated virus-paint interactions within and outside pH windows of favorable virus-paint electrostatic interactions. Hydrophobic and electrostatic interactions governed virus attachment while van der Waals interactions played a relatively minor role. In higher ionic strength solutions, the extent of virus attachment correlated with the free energy of virus-paint interfacial interaction, [Formula: see text] : more negative energies corresponded to higher values of the areal mass density of attached viruses. Hydrophobicity was the dominant factor in determining virus adhesion from high ionic strength solutions where electrostatic interactions were screened out. The hydrophobicity of paints, while desirable for minimizing moisture intrusion, also facilitates attachment of colloids such as viruses. The results call for new approaches to the materials design of indoor paints with enhanced resistance to virus adhesion. Paints so formulated should help reduce human exposure to viruses.


Subject(s)
Adenoviruses, Human , Humans , Hydrophobic and Hydrophilic Interactions , Osmolar Concentration , Paint , Static Electricity , Surface Properties
2.
J Colloid Interface Sci ; 540: 155-166, 2019 Mar 22.
Article in English | MEDLINE | ID: mdl-30639663

ABSTRACT

HYPOTHESES: By selecting constituent polyelectrolytes and controlling conditions of their deposition, the resulting polyelectrolyte multilayers can be designed as surface coatings with controlled adhesive properties with respect to viruses. Charge and hydrophilicity of the polyelectrolyte multilayers govern virus adhesion. EXPERIMENTS: Four surfaces of different charges and hydrophobicities were designed using a layer-by-layer assembly of poly(styrene-4-sulfonate) and poly(dimethyl diallyl ammonium chloride). Contact angle measurements gave an estimate of MS2 hydrophilicity in terms of free energy of interfacial interaction in water. Experimental results on MS2 adhesion obtained using quartz crystal microbalance with dissipation monitoring were compared with predictions by the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory. FINDINGS: MS2 deposition onto polyelectrolyte multilayers occurred in two phases: an early phase defined by virus-surface interactions and a later phase with virus-virus interactions controlling deposition kinetics. Principal component analysis showed that the deposition rates in the two phases were independent one of another and that each was correlated to the depth of the secondary minimum of the corresponding XDLVO energy profile. Hydrophobic and electrostatic interactions governed the deposition process: short range hydrophilic repulsion prevented deposition into the primary minimum while electrostatic interactions defined the dependence of the deposition kinetics on the ionic strength. Different surfaces showed distinct kinetics of and capacities for MS2 deposition pointing to the potential of polyelectrolyte multilayers as easy-to-apply coatings for regulating virus adsorption, inactivating viruses via the virucidal action of cationic polyelectrolytes and reducing human exposure to viruses.


Subject(s)
Levivirus/chemistry , Polyelectrolytes/chemistry , Adsorption , Ammonium Chloride/chemistry , Hydrophobic and Hydrophilic Interactions , Kinetics , Levivirus/isolation & purification , Polystyrenes/chemistry , Quartz Crystal Microbalance Techniques , Static Electricity , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...