Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
2.
J Cell Mol Med ; 26(18): 4756-4767, 2022 09.
Article in English | MEDLINE | ID: mdl-35975353

ABSTRACT

Immunoprotection and oxygen supply are vital in implementing a cell therapy for type 1 diabetes (T1D). Without these features, the transplanted islet cell clusters will be rejected by the host immune system, and necrosis will occur due to hypoxia. The use of anti-rejection drugs can help protect the transplanted cells from the immune system; yet, they also may have severe side effects. Cell delivery systems (CDS) have been developed for islet transplantation to avoid using immunosuppressants. CDS provide physical barriers to reduce the immune response and chemical coatings to reduce host fibrotic reaction. In some CDS, there is architecture to support vascularization, which enhances oxygen exchange. In this review, we discuss the current clinical and preclinical studies using CDS without immunosuppression as a cell therapy for T1D. We find that though CDS have been demonstrated for their ability to support immunoisolation of the grafted cells, their functionality has not been fully optimized. Current advanced methods in clinical trials demonstrate the systems are partly functional, physically complicated to implement or inefficient. However, modifications are being made to overcome these issues.


Subject(s)
Diabetes Mellitus, Type 1 , Islets of Langerhans Transplantation , Islets of Langerhans , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 1/therapy , Humans , Immunosuppression Therapy , Islets of Langerhans/metabolism , Islets of Langerhans Transplantation/methods , Oxygen/metabolism
3.
Acta Biomater ; 118: 69-82, 2020 12.
Article in English | MEDLINE | ID: mdl-33039595

ABSTRACT

In this study we developed and validated a 3D-printed drug delivery system (3DPDDS) to 1) improve local treatment efficacy of commonly applied chemotherapeutic agents in bone cancers to ultimately decrease their systemic side effects and 2) explore its concomitant diagnostic potential. Thus, we locally applied 3D-printed medical-grade polycaprolactone (mPCL) scaffolds loaded with Doxorubicin (DOX) and measured its effect in a humanized primary bone cancer model. A bioengineered species-sensitive orthotopic humanized bone niche was established at the femur of NOD-SCID IL2Rγnull (NSG) mice. After 6 weeks of in vivo maturation into a humanized ossicle, Luc-SAOS-2 cells were injected orthotopically to induce local growth of osteosarcoma (OS). After 16 weeks of OS development, a biopsy-like defect was created within the tumor tissue to locally implant the 3DPDDS with 3 different DOX loading doses into the defect zone. Histo- and morphological analysis demonstrated a typical invasive OS growth pattern inside a functionally intact humanized ossicle as well as metastatic spread to the murine lung parenchyma. Analysis of the 3DPDDS revealed the implants' ability to inhibit tumor infiltration and showed local tumor cell death adjacent to the scaffolds without any systemic side effects. Together these results indicate a therapeutic and diagnostic capacity of 3DPDDS in an orthotopic humanized OS tumor model.


Subject(s)
Bone Neoplasms , Osteosarcoma , Animals , Biocompatible Materials , Bone Neoplasms/drug therapy , Mice , Mice, Inbred NOD , Mice, SCID , Osteosarcoma/drug therapy , Printing, Three-Dimensional
4.
Biofabrication ; 11(3): 035014, 2019 04 26.
Article in English | MEDLINE | ID: mdl-30933941

ABSTRACT

Tissue engineering macroporous scaffolds are important for regeneration of large volume defects resulting from diseases such as breast or bone cancers. Another important part of the treatment of these conditions is adjuvant drug therapy to prevent disease recurrence or surgical site infection. In this study, we developed a new type of macroporous scaffolds that have drug loading and release functionality to use in these scenarios. 3D printing allows for building macroporous scaffolds with deterministically designed complex architectures for tissue engineering yet they often have low surface areas thus limiting their drug loading capability. In this proof-of-concept study, we aimed to introduce microscale porosity into macroporous scaffolds to allow for efficient yet simple soak-loading of various clinical drugs and control their release. Manufacturing of scaffolds having both macroporosity and microscale porosity remains a difficult task. Here, we combined porogen leaching and 3D printing to achieve this goal. Porogen microparticles were mixed with medical grade polycaprolactone and extruded into scaffolds having macropores of 0.7 mm in size. After leaching, intra-strut microscale pores were realized with pore size of 20-70 µm and a total microscale porosity of nearly 40%. Doxorubicin (DOX), paclitaxel (PTX) and cefazolin (CEF) were chosen as model drugs of different charges and solubilities to soak-load the scaffolds and achieved loading efficiency of over 80%. The microscale porosity was found to significantly reduce the burst release allowing the microporous scaffolds to release drugs up to 200, 500 and 150 h for DOX, PTX and CEF, respectively. Finally, cell assays were used and confirmed the bioactivities and dose response of the drug-loaded scaffolds. Together, the findings from this proof-of-concept study demonstrate a new type of scaffolds with dual micro-, macro-porosity for tissue engineering applications with intrinsic capability for efficient loading and sustained release of drugs to prevent post-surgery complications.


Subject(s)
Drug Delivery Systems , Printing, Three-Dimensional , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Anti-Infective Agents/pharmacology , Antineoplastic Agents/pharmacology , Cefazolin/pharmacology , Cell Line, Tumor , Doxorubicin/chemistry , Doxorubicin/pharmacology , Drug Liberation , Elastic Modulus , Humans , Microbial Sensitivity Tests , Paclitaxel/pharmacology , Polyesters/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Porosity , Solubility , Staphylococcus aureus/drug effects , Water/chemistry
5.
Mater Sci Eng C Mater Biol Appl ; 87: 78-89, 2018 Jun 01.
Article in English | MEDLINE | ID: mdl-29549952

ABSTRACT

Advanced scaffolds used in tissue regenerating applications should be designed to address clinically relevant complications such as surgical site infection associated with surgical procedures. Recognizing that patient-specific scaffolds with local drug delivery capabilities are a promising approach, we combined 3D printing with traditional salt-leaching techniques to prepare a new type of scaffold with purposely designed macro- and micro-porosity. The dual macro/micro porous scaffolds of medical-grade polycaprolactone (mPCL) were characterized for their porosity, surface area, mechanical properties and degradation. The use of these scaffolds for local prophylactic release of Cefazolin to inhibit S. aureus growth was investigated as an example of drug delivery with this versatile platform. The introduction of microporosity and increased surface area allowed for loading of the scaffold using a simple drop-loading method of this heat-labile antibiotic and resulted in significant improvement in its release for up to 3 days. The Cefazolin released from scaffolds retained its bioactivity similar to that of fresh Cefazolin. There were no cytotoxic effects in vitro against 3 T3 fibroblasts at Cefazolin concentration of up to 100 µg/ml and no apparent effects on blood clot formation on the scaffolds in vitro. This study therefore presents a novel type of scaffolds with dual macro- and micro-porosity manufactured by a versatile method of 3D printing combined with salt-leaching. These scaffolds could be useful in tissue regeneration applications where it is desirable to prevent complications using local delivery of drugs.


Subject(s)
Anti-Bacterial Agents , Cefazolin , Drug Delivery Systems/methods , Polyesters , Printing, Three-Dimensional , Staphylococcus aureus/growth & development , 3T3 Cells , Animals , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/pharmacology , Cefazolin/chemistry , Cefazolin/pharmacokinetics , Cefazolin/pharmacology , Mice , Polyesters/chemistry , Polyesters/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...