Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; 31(32): e1808357, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31206857

ABSTRACT

Perovskite solar cells increasingly feature mixed-halide mixed-cation compounds (FA1- x - y MAx Csy PbI3- z Brz ) as photovoltaic absorbers, as they enable easier processing and improved stability. Here, the underlying reasons for ease of processing are revealed. It is found that halide and cation engineering leads to a systematic widening of the anti-solvent processing window for the fabrication of high-quality films and efficient solar cells. This window widens from seconds, in the case of single cation/halide systems (e.g., MAPbI3 , FAPbI3 , and FAPbBr3 ), to several minutes for mixed systems. In situ X-ray diffraction studies reveal that the processing window is closely related to the crystallization of the disordered sol-gel and to the number of crystalline byproducts; the processing window therefore depends directly on the precise cation/halide composition. Moreover, anti-solvent dripping is shown to promote the desired perovskite phase with careful formulation. The processing window of perovskite solar cells, as defined by the latest time the anti-solvent drip yields efficient solar cells, broadened with the increasing complexity of cation/halide content. This behavior is ascribed to kinetic stabilization of sol-gel state through cation/halide engineering. This provides guidelines for designing new formulations, aimed at formation of the perovskite phase, ultimately resulting in high-efficiency perovskite solar cells produced with ease and with high reproducibility.

SELECTION OF CITATIONS
SEARCH DETAIL
...