Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Can J Cardiol ; 39(10): 1410-1416, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37270167

ABSTRACT

BACKGROUND: We previously developed an automated approach based on pace mapping to localise early left ventricular (LV) activation origin. To avoid a singular system, we require pacing from at least 2 more known sites than the number of electrocardiography (ECG) leads used. Fewer leads used means fewer pacing sites required. We sought to identify an optimal minimal ECG lead set for the automated approach. METHODS: We used 1715 LV endocardial pacing sites to create derivation and testing data sets. The derivation data set, consisting of 1012 known pacing sites pooled from 38 patients, was used to identify an optimal 3-lead set by means of random forest regression (RFR), and a second 3-lead set by means of exhaustive search. The performance of these sets and the calculated Frank leads was compared within the testing data set with 703 pacing sites pooled from 25 patients. RESULTS: The RFR yielded III, V1, and V4, whereas the exhaustive search identified leads II, V2 and V6. Comparison of these sets and the calculated Frank leads demonstrated similar performance when using 5 or more known pacing sites. Accuracy improved with additional pacing sites, achieving mean accuracy of < 5 mm, after including up to 9 pacing sites when they were focused on a suspected area of ventricular activation origin (radius < 10 mm). CONCLUSIONS: The RFR identified the quasi-orthogonal leads set to localise the source of LV activation, minimizing the training set of pacing sites. Localization accuracy was high with the use of these leads and was not significantly different from using leads identified by exhaustive search or empiric use of Frank leads.

2.
Plant Biotechnol J ; 20(5): 903-919, 2022 05.
Article in English | MEDLINE | ID: mdl-34978131

ABSTRACT

SUMOylation is involved in various aspects of plant biology, including drought stress. However, the relationship between SUMOylation and drought stress tolerance is complex; whether SUMOylation has a crosstalk with ubiquitination in response to drought stress remains largely unclear. In this study, we found that both increased and decreased SUMOylation led to increased survival of apple (Malus × domestica) under drought stress: both transgenic MdSUMO2A overexpressing (OE) plants and MdSUMO2 RNAi plants exhibited enhanced drought tolerance. We further confirmed that MdDREB2A is one of the MdSUMO2 targets. Both transgenic MdDREB2A OE and MdDREB2AK192R OE plants (which lacked the key site of SUMOylation by MdSUMO2A) were more drought tolerant than wild-type plants. However, MdDREB2AK192R OE plants had a much higher survival rate than MdDREB2A OE plants. We further showed SUMOylated MdDREB2A was conjugated with ubiquitin by MdRNF4 under drought stress, thereby triggering its protein degradation. In addition, MdRNF4 RNAi plants were more tolerant to drought stress. These results revealed the molecular mechanisms that underlie the relationship of SUMOylation with drought tolerance and provided evidence for the tight control of MdDREB2A accumulation under drought stress mediated by SUMOylation and ubiquitination.


Subject(s)
Malus , Droughts , Gene Expression Regulation, Plant/genetics , Malus/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Stress, Physiological/genetics , Sumoylation
3.
Plant Physiol ; 185(4): 1924-1942, 2021 04 23.
Article in English | MEDLINE | ID: mdl-33793944

ABSTRACT

Less than 40% of the nitrogen (N) fertilizer applied to soil is absorbed by crops. Thus, improving the N use efficiency of crops is critical for agricultural development. However, the underlying regulation of these processes remains largely unknown, particularly in woody plants. By conducting yeast two-hybrid assays, we identified one interacting protein of MdMYB88 and MdMYB124 in apple (Malus × domestica), namely BTB and TAZ domain protein 2 (MdBT2). Ubiquitination and protein stabilization analysis revealed that MdBT2 ubiquitinates and degrades MdMYB88 and MdMYB124 via the 26S proteasome pathway. MdBT2 negatively regulates nitrogen usage as revealed by the reduced fresh weight, dry weight, N concentration, and N usage index of MdBT2 overexpression calli under low-N conditions. In contrast, MdMYB88 and MdMYB124 increase nitrate absorption, allocation, and remobilization by regulating expression of MdNRT2.4, MdNRT1.8, MdNRT1.7, and MdNRT1.5 under N limitation, thereby regulating N usage. The results obtained illustrate the mechanism of a regulatory module comprising MdBT2-MdMYB88/MdMYB124-MdNRTs, through which plants modulate N usage. These data contribute to a molecular approach to improve the N usage of fruit crops under limited N acquisition.


Subject(s)
Malus/genetics , Malus/metabolism , Nitrogen/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Ubiquitination/genetics , Ubiquitination/physiology , Gene Expression Regulation, Plant , Genes, Plant , Plants, Genetically Modified , Two-Hybrid System Techniques
4.
Hortic Res ; 7(1): 98, 2020.
Article in English | MEDLINE | ID: mdl-32637126

ABSTRACT

The function of serrate (SE) in miRNA biogenesis in Arabidopsis is well elucidated, whereas its role in plant drought resistance is largely unknown. In this study, we report that MdSE acts as a negative regulator of apple (Malus × domestica) drought resistance by regulating the expression levels of MdMYB88 and MdMYB124 and miRNAs, including mdm-miR156, mdm-miR166, mdm-miR172, mdm-miR319, and mdm-miR399. MdSE interacts with MdMYB88 and MdMYB124, two positive regulators of apple drought resistance. MdSE decreases the transcript and protein levels of MdMYB88 and MdMYB124, which directly regulate the expression of MdNCED3, a key enzyme in abscisic acid (ABA) biosynthesis. Furthermore, MdSE is enriched in the same region of the MdNECD3 promoter where MdMYB88/MdMYB124 binds. Consistently, MdSE RNAi transgenic plants are more sensitive to ABA-induced stomatal closure, whereas MdSE OE plants are less sensitive. In addition, under drought stress, MdSE is responsible for the biogenesis of mdm-miR399, a negative regulator of drought resistance, and negatively regulates miRNAs, including mdm-miR156, mdm-miR166, mdm-miR172, and mdm-miR319, which are positive regulators of drought resistance. Taken together, by revealing the negative role of MdSE, our results broaden our understanding of the apple drought response and provide a candidate gene for apple drought improvement through molecular breeding.

5.
Anticancer Res ; 37(10): 5507-5513, 2017 10.
Article in English | MEDLINE | ID: mdl-28982863

ABSTRACT

BACKGROUND/AIM: The inhibition of a disintegrin and metalloproteinase (ADAM) has the potential to become a novel approach for natural killer (NK) cell-based cancer immunotherapy. Thus, the aim of this study was to investigate the influence of ADAM10 and ADAM17 inhibitors on expanded NK cell to enhance antibody-dependent cellular cytotoxicity (ADCC) in breast cancer cell lines. MATERIALS AND METHODS: NK cells were expanded in medium supplemented with an ADAM10 or ADAM17 inhibitor to prevent the shedding of soluble CD16/FcγRIII. The expression level of CD16 and production of interferon-gamma (IFN-γ) was detected by flow cytometry using specific antibodies. ADCC activity of expanded NK cells was estimated in trastuzumab treated breast cancer cell lines such as MCF-7, MDA-MB-231, SKBR3, and BT-474 cells. RESULTS: The ADAM17 inhibitor increased the purity of expanded NK cells to 90% after 14 days at 5 and 10 µM in vitro (p=0.043). However, the expansion rate of NK cells was decreased at 10 µM of the ADAM 17 inhibitor (p=0.043). Inhibition of ADAM10 suppressed the expansion of NK cells, although the NK purity was increased at 1 µM of the inhibitor. The expression of CD16 was significantly increased at 1 and 5 µM of the ADAM17 inhibitor (p=0.046, 0.028, respectively) during the culturing period. Inhibition of ADAM10 reduced the expression of CD16 on NK cells. The cytotoxic activity of the ADAM17 inhibitor treated NK cells against MCF-7 (p=0.039) and BT-474 (p=0.027) cells was significantly elevated. The ADCC activity of NK cells treated with 5 µM of ADAM17 inhibitor was significantly increased against SKBR-3 and BT-474 (p=0.027). Inhibition of ADAM17 increased the production of IFN-γ in expanded NK cells. CONCLUSION: The inhibition of ADAM17 enhanced the purity of expanded NK cells and the ADCC activity of these cells against trastuzumab treated breast cancer cell lines.


Subject(s)
ADAM10 Protein/antagonists & inhibitors , ADAM17 Protein/antagonists & inhibitors , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Antibody-Dependent Cell Cytotoxicity/drug effects , Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Cell Proliferation/drug effects , Killer Cells, Natural/drug effects , Lymphocyte Activation/drug effects , Membrane Proteins/antagonists & inhibitors , Protease Inhibitors/pharmacology , ADAM10 Protein/metabolism , ADAM17 Protein/metabolism , Amyloid Precursor Protein Secretases/metabolism , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Breast Neoplasms/enzymology , Breast Neoplasms/immunology , Breast Neoplasms/pathology , Coculture Techniques , Dose-Response Relationship, Drug , Female , GPI-Linked Proteins/metabolism , Humans , Interferon-gamma/metabolism , Killer Cells, Natural/enzymology , Killer Cells, Natural/immunology , MCF-7 Cells , Membrane Proteins/metabolism , Receptors, IgG/metabolism , Time Factors , Trastuzumab/pharmacology , Tumor Microenvironment
6.
J Med Chem ; 59(11): 5311-23, 2016 06 09.
Article in English | MEDLINE | ID: mdl-27100476

ABSTRACT

Our initial efforts to prepare tissue-specific near-infrared (NIR) fluorescent compounds generated successful correlation between physicochemical properties and global uptake in major organs after systemic circulation and biodistribution. Herein, we focus on the effects on biodistribution based on modulating electronic influencing moieties from donating to withdrawing moieties at both the heterocyclic site and through meso-substitution of pentamethine cyanine fluorophores. These selected modifications harnessed innate biodistribution pathways through the structure-inherent targeting, resulting in effective imaging of the adrenal glands, pituitary gland, lymph nodes, pancreas, and thyroid and salivary glands. These native-tissue contrast agents will arm surgeons with a powerful and versatile arsenal for intraoperative NIR imaging in real time.


Subject(s)
Carbocyanines/pharmacokinetics , Fluorescent Dyes/pharmacokinetics , Molecular Imaging/methods , Surgery, Computer-Assisted , Adrenal Glands/diagnostic imaging , Adrenal Glands/surgery , Animals , Carbocyanines/analysis , Carbocyanines/chemical synthesis , Carbocyanines/chemistry , Fluorescent Dyes/analysis , Fluorescent Dyes/chemical synthesis , Fluorescent Dyes/chemistry , Lymph Nodes/diagnostic imaging , Lymph Nodes/surgery , Male , Mice , NIH 3T3 Cells , Pancreas/diagnostic imaging , Pancreas/surgery , Pituitary Gland/diagnostic imaging , Pituitary Gland/surgery , Salivary Glands/diagnostic imaging , Salivary Glands/surgery , Thyroid Gland/diagnostic imaging , Thyroid Gland/surgery , Tissue Distribution
7.
Am J Cancer Res ; 5(1): 243-54, 2015.
Article in English | MEDLINE | ID: mdl-25628934

ABSTRACT

Ardipusilloside I (ADS-I) is a natural compound that can be isolated from the Chinese medicinal herb Ardisiapusilla A.DC, and has been reported to inhibit the growth of glioblastoma cells in cultures. This study was designed to test its efficacy by the delivery using biodegradable implants against glioblastoma in vivo. ADS-I was incorporated into polymer microspheres, which were prepared by a mixture of poly (D, L-lactic acid) and poly (D, L-lactic-co-glycolic acid) polymers and then fabricated into wafers. The anti-glioma activities of ADS-I-loaded wafers were examined by methylthiazol tetrazolium (MTT) assay in cultured rat C6 glioma cells, and by magnetic resonance imaging (MRI) and survival monitoring in C6 glioma-bearing rats. Here, we showed that ADS-I-loaded wafers sustained ADS-I release in vitro for 36 days in Higuchi model of kinetics, and had the same cytotoxic activity as ADS-I in the solution against the growth of C6 glioma cells in cultures. In C6 glioma-bearing rats, ADS-I wafer implants inhibited tumor growth in a dose-dependent matter, and were more effective than the same dosage of ADS-I in the solution. The tumor suppression efficacies of ADS-I wafer implants were positively correlated with an increase in tumor cell apoptosis and prolonged animal survival, and were associated with a decrease in vascular endothelial growth factor, C-reactive protein, tumor necrosis factor-α and interleukin-6, and an increase in interleukin-2 expression. In conclusion, this study demonstrates significant efficacy of local delivery of ADS-I using polymer implants against glioma tumor growth in vivo, suggesting the potential of ADS-I-loaded wafers for glioma treatment.

8.
Physiol Genomics ; 44(2): 183-97, 2012 Feb 01.
Article in English | MEDLINE | ID: mdl-22147266

ABSTRACT

Myogenesis is a tightly controlled process involving the transcriptional activation and repression of thousands of genes. Although many components of the transcriptional network regulating the later phases of myogenesis have been identified, relatively few studies have described the transcriptional landscape during the first 24 h, when myoblasts commit to differentiate. Through dense temporal profiling of differentiating C2C12 myoblasts, we identify 193 transcriptional regulators (TRs) whose expression is significantly altered within the first 24 h of myogenesis. A high-content shRNA screen of 77 TRs involving 427 stable lines identified 42 genes whose knockdown significantly inhibits differentiation of C2C12 myoblasts. Of the TRs that were differentially expressed within the first 24 h, over half inhibited differentiation when knocked down, including known regulators of myogenesis (Myod1, Myog, and Myf5), as well as 19 TRs not previously associated with this process. Surprisingly, a similar proportion (55%) of shRNAs targeting TRs whose expression did not change also inhibited C2C12 myogenesis. We further show that a subset of these TRs inhibits myogenesis by downregulating expression of known regulatory and structural proteins. Our findings clearly illustrate that several TRs critical for C2C12 myogenesis are not differentially regulated, suggesting that approaches that focus functional studies on differentially-expressed transcripts will fail to provide a comprehensive view of this complex process.


Subject(s)
Cell Differentiation , Gene Expression Regulation , Muscle Development/genetics , Myoblasts/cytology , Animals , Down-Regulation , Gene Knockdown Techniques , Mice , Muscle, Skeletal/metabolism , Myoblasts/metabolism , RNA, Small Interfering/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
9.
BMC Genomics ; 12: 115, 2011 Feb 16.
Article in English | MEDLINE | ID: mdl-21324195

ABSTRACT

BACKGROUND: Current methods of measuring transcription in high-throughput have led to significant improvements in our knowledge of transcriptional regulation and Systems Biology. However, endpoint measurements obtained from methods that pool populations of cells are not amenable to studying time-dependent processes that show cell heterogeneity. RESULTS: Here we describe a high-throughput platform for measuring transcriptional changes in real time in single mammalian cells. By using reverse transfection microarrays we are able to transfect fluorescent reporter plasmids into 600 independent clusters of cells plated on a single microscope slide and image these clusters every 20 minutes. We use a fast-maturing, destabilized and nuclear-localized reporter that is suitable for automated segmentation to accurately measure promoter activity in single cells. We tested this platform with synthetic drug-inducible promoters that showed robust induction over 24 hours. Automated segmentation and tracking of over 11 million cell images during this period revealed that cells display substantial heterogeneity in their responses to the applied treatment, including a large proportion of transfected cells that do not respond at all. CONCLUSIONS: The results from our single-cell analysis suggest that methods that measure average cellular responses, such as DNA microarrays, RT-PCR and chromatin immunoprecipitation, characterize a response skewed by a subset of cells in the population. Our method is scalable and readily adaptable to studying complex systems, including cell proliferation, differentiation and apoptosis.


Subject(s)
High-Throughput Nucleotide Sequencing/methods , Oligonucleotide Array Sequence Analysis/methods , Promoter Regions, Genetic , Transcription, Genetic , Animals , Cell Line , Gene Expression Profiling , Microscopy, Fluorescence , Plasmids , Single-Cell Analysis , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...