Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 5706, 2023 09 14.
Article in English | MEDLINE | ID: mdl-37709767

ABSTRACT

GPR84 is a unique orphan G protein-coupled receptor (GPCR) that can be activated by endogenous medium-chain fatty acids (MCFAs). The signaling of GPR84 is largely pro-inflammatory, which can augment inflammatory response, and GPR84 also functions as a pro-phagocytic receptor to enhance phagocytic activities of macrophages. In this study, we show that the activation of GPR84 by the synthetic agonist 6-OAU can synergize with the blockade of CD47 on cancer cells to induce phagocytosis of cancer cells by macrophages. We also determine a high-resolution structure of the GPR84-Gi signaling complex with 6-OAU. This structure reveals an occluded binding pocket for 6-OAU, the molecular basis of receptor activation involving non-conserved structural motifs of GPR84, and an unusual Gi-coupling interface. Together with computational docking and simulations studies, this structure also suggests a mechanism for the high selectivity of GPR84 for MCFAs and a potential routes of ligand binding and dissociation. These results provide a framework for understanding GPR84 signaling and developing new drugs targeting GPR84.


Subject(s)
Phagocytes , Signal Transduction , Macrophages , Phagocytosis , Fatty Acids
2.
Res Sq ; 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36824923

ABSTRACT

GPR84 is a unique orphan G protein-coupled receptor (GPCR) that can be activated by endogenous medium-chain fatty acids (MCFAs). The signaling of GPR84 is largely pro-inflammatory, which can augment inflammatory response, and GPR84 also functions as a pro-phagocytic receptor to enhance the phagocytic activities of macrophages. In this study, we first showed that the activation of GPR84 by the synthetic agonist 6-OAU could synergize with the blockade of CD47 on cancer cells to induce phagocytosis of cancer cells by macrophages. Then, we determined a high-resolution structure of the GPR84-Gi signaling complex with 6-OAU. This structure revealed a completely occluded binding pocket for 6-OAU, the molecular basis of receptor activation involving non-conserved structural motifs of GPR84, and an unusual Gi-coupling interface. Together with computational docking and simulations studies, our structure also suggested the mechanism for the high selectivity of GPR84 for MCFAs and the potential routes of ligand binding and dissociation. Our results provide a framework for understanding GPR84 signaling and developing new drugs targeting GPR84.

3.
Sci Adv ; 8(11): eabl9171, 2022 03 18.
Article in English | MEDLINE | ID: mdl-35302839

ABSTRACT

Macrophages are essential in eliciting antibody-dependent cellular phagocytosis (ADCP) of cancer cells. However, a satisfactory anticancer efficacy of ADCP is contingent on early antibody administration, and resistance develops along with cancer progression. Here, we investigate the mechanisms underlying ADCP and demonstrate an effective combinatorial strategy to potentiate its efficacy. We identified paclitaxel as a universal adjuvant that efficiently potentiated ADCP by a variety of anticancer antibodies in multiple cancers. Rather than eliciting cytotoxicity on cancer cells, paclitaxel polarized macrophages toward a state with enhanced phagocytic ability. Paclitaxel-treated macrophages down-regulated cell surface CSF1R whose expression was negatively correlated with patient survival in multiple malignancies. The suppression of CSF1R in macrophages enhanced ADCP of cancer cells, suggesting a role of CSF1R in regulating macrophage phagocytic ability. Together, these findings define a potent strategy for using conventional anticancer drugs to stimulate macrophage phagocytosis and promote the therapeutic efficacy of clinical anticancer antibodies.


Subject(s)
Macrophages , Neoplasms , Antibodies, Monoclonal/metabolism , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Cell Line, Tumor , Humans , Immunotherapy , Macrophages/metabolism , Neoplasms/metabolism , Phagocytosis
4.
Blood ; 139(22): 3290-3302, 2022 06 02.
Article in English | MEDLINE | ID: mdl-35134139

ABSTRACT

Tumor-associated macrophages (TAMs) are often the most abundant immune cells in the tumor microenvironment (TME). Strategies targeting TAMs to enable tumor cell killing through cellular phagocytosis have emerged as promising cancer immunotherapy. Although several phagocytosis checkpoints have been identified, the desired efficacy has not yet been achieved by blocking such checkpoints in preclinical models or clinical trials. Here, we showed that late-stage non-Hodgkin lymphoma (NHL) was resistant to therapy targeting phagocytosis checkpoint CD47 due to the compromised capacity of TAMs to phagocytose lymphoma cells. Via a high-throughput screening of the US Food and Drug Administration-approved anticancer small molecule compounds, we identified paclitaxel as a potentiator that promoted the clearance of lymphoma by directly evoking phagocytic capability of macrophages, independently of paclitaxel's chemotherapeutic cytotoxicity toward NHL cells. A combination with paclitaxel dramatically enhanced the anticancer efficacy of CD47-targeted therapy toward late-stage NHL. Analysis of TME by single-cell RNA sequencing identified paclitaxel-induced TAM populations with an upregulation of genes for tyrosine kinase signaling. The activation of Src family tyrosine kinases signaling in macrophages by paclitaxel promoted phagocytosis against NHL cells. In addition, we identified a role of paclitaxel in modifying the TME by preventing the accumulation of a TAM subpopulation that was only present in late-stage lymphoma resistant to CD47-targeted therapy. Our findings identify a novel and effective strategy for NHL treatment by remodeling TME to enable the tumoricidal roles of TAMs. Furthermore, we characterize TAM subgroups that determine the efficiency of lymphoma phagocytosis in the TME and can be potential therapeutic targets to unleash the antitumor activities of macrophages.


Subject(s)
Lymphoma , Neoplasms , CD47 Antigen , Humans , Immunosuppression Therapy , Immunotherapy , Lymphoma/drug therapy , Macrophages , Paclitaxel/pharmacology , Phagocytosis , Tumor Microenvironment
5.
Front Aging ; 22021 05.
Article in English | MEDLINE | ID: mdl-34746919

ABSTRACT

In early Alzheimer's disease (AD) spatial navigation is one of the first impairments to emerge; however, the precise cause of this impairment is unclear. Previously, we showed that, in a mouse model of tau and amyloid beta (Aß) aggregation, getting lost represents, at least in part, a failure to use distal cues to get oriented in space and that impaired parietal-hippocampal network level plasticity during sleep may underlie this spatial disorientation. However, the relationship between tau and amyloid beta aggregation in this brain network and impaired spatial orientation has not been assessed. Therefore, we used several approaches, including canonical correlation analysis and independent components analysis tools, to examine the relationship between pathology profile across the parietal-hippocampal brain network and spatial reorientation learning and memory performance. We found that consistent with the exclusive impairment in 3xTg-AD 6-month female mice, only 6-month female mice had an ICA identified pattern of tau pathology across the parietal-hippocampal network that were positively correlated with behavior. Specifically, a higher density of pTau positive cells predicted worse spatial learning and memory. Surprisingly, despite a lack of impairment relative to controls, 3-month female, as well as 6- and 12- month male mice all had patterns of tau pathology across the parietal-hippocampal brain network that are predictive of spatial learning and memory performance. However, the direction of the effect was opposite, a negative correlation, meaning that a higher density of pTau positive cells predicted better performance. Finally, there were not significant group or region differences in M78 density at any of the ages examined and ICA analyses were not able to identify any patterns of 6E10 staining across brain regions that were significant predictors of behavioral performance. Thus, the pattern of pTau staining across the parietal-hippocampal network is a strong predictor of spatial learning and memory performance, even for mice with low levels of tau accumulation and intact spatial re-orientation learning and memory. This suggests that AD may cause spatial disorientation as a result of early tau accumulation in the parietal-hippocampal network.

6.
J Immunother Cancer ; 9(3)2021 03.
Article in English | MEDLINE | ID: mdl-33753567

ABSTRACT

BACKGROUND: Limited therapeutic options are available for triple-negative breast cancer (TNBC), emphasizing an urgent need for more effective treatment approaches. The development of strategies by targeting tumor-associated macrophages (TAMs) to stimulate their ability of Programmed Cell Removal (PrCR) provides a promising new immunotherapy for TNBC treatment. METHODS: CD47 is a critical self-protective "don't eat me" signal on multiple human cancers against macrophage immunosurveillance. Using human and mouse TNBC preclinical models, we evaluated the efficacy of PrCR-based immunotherapy by blocking CD47. We performed high-throughput screens on FDA-approved anti-cancer small molecule compounds for agents potentiating PrCR and enhancing the efficacy of CD47-targeted therapy for TNBC treatment. RESULTS: We showed that CD47 was widely expressed on TNBC cells and TAMs represented the most abundant immune cell population in TNBC tumors. Blockade of CD47 enabled PrCR of TNBC cells, but the efficacy was not satisfactory. Our high-throughput screens identified cabazitaxel in enhancing PrCR-based immunotherapy. A combination of CD47 blockade and cabazitaxel treatment yielded a highly effective treatment strategy, promoting PrCR of TNBC cells and inhibiting tumor development and metastasis in preclinical models. We demonstrated that cabazitaxel potentiated PrCR by activating macrophages, independent of its cytotoxicity toward cancer cells. When treated with cabazitaxel, the molecular and phenotypic signatures of macrophages were polarized toward M1 state, and the NF-kB signaling pathway became activated. CONCLUSION: The combination of CD47 blockade and macrophage activation by cabazitaxel synergizes to vastly enhance the elimination of TNBC cells. Our results show that targeting macrophages is a promising and effective strategy for TNBC treatment.


Subject(s)
Antineoplastic Agents, Immunological/pharmacology , Antineoplastic Combined Chemotherapy Protocols/pharmacology , CD47 Antigen/antagonists & inhibitors , Macrophage Activation/drug effects , Taxoids/pharmacology , Triple Negative Breast Neoplasms/drug therapy , Tumor-Associated Macrophages/drug effects , Animals , CD47 Antigen/genetics , CD47 Antigen/metabolism , Cell Line, Tumor , Databases, Genetic , Drug Synergism , Female , Humans , Mice , Mice, Inbred BALB C , Mice, Knockout , NF-kappa B/metabolism , Phagocytosis/drug effects , Phenotype , RAW 264.7 Cells , Signal Transduction , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/immunology , Triple Negative Breast Neoplasms/metabolism , Tumor Microenvironment , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/metabolism , Xenograft Model Antitumor Assays
7.
Hosp Pharm ; 51(4): 328-36, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27303081

ABSTRACT

Each month, subscribers to The Formulary Monograph Service receive 5 to 6 well-documented monographs on drugs that are newly released or are in late phase 3 trials. The monographs are targeted to Pharmacy & Therapeutics Committees. Subscribers also receive monthly 1-page summary monographs on agents that are useful for agendas and pharmacy/nursing in-services. A comprehensive target drug utilization evaluation/medication use evaluation (DUE/MUE) is also provided each month. With a subscription, the monographs are sent in print and are also available on-line. Monographs can be customized to meet the needs of a facility. A drug class review is now published monthly with The Formulary Monograph Service. Through the cooperation of The Formulary, Hospital Pharmacy publishes selected reviews in this column. For more information about The Formulary Monograph Service, contact Wolters Kluwer customer service at 866-397-3433. The April 2016 monograph topics are von Willebrand factor (recombinant), daratumumab, elotuzumab, uridine triacetate, and ixazomib. The MUE is on lesinurad.

8.
Biosecur Bioterror ; 3(1): 39-50, 2005.
Article in English | MEDLINE | ID: mdl-15853454

ABSTRACT

Biological threat detection programs that collect air samples and monitor for large-scale release of biowarfare agents generate large numbers of samples that must be quickly and accurately screened for the presence of biological agents. An impediment to the rapid analysis of large numbers of environmental biological samples is that manual laboratory processes are time-consuming and require resources to maintain infrastructure, trained personnel, and adequate supplies of testing reagents. An ideal screening system would be capable of processing multiple samples rapidly, cost-effectively, and with minimal personnel. In the present study, we evaluated the Automated Biological Agent Testing System (ABATS) to explore the capability of automation to increase sample throughput, maximize system accuracy, and reduce the analysis costs associated with biological threat agent screening in environmental samples. This study demonstrates the utility of this concept and the potential of an automated system to address the growing environmental monitoring needs of the United States.


Subject(s)
Biological Warfare/prevention & control , Civil Defense/methods , Environmental Monitoring/methods , Automation/economics , Automation/methods , Cost-Benefit Analysis , Environmental Monitoring/economics , Equipment Design , Equipment Failure Analysis , Reproducibility of Results , Sensitivity and Specificity
9.
J Clin Microbiol ; 41(2): 689-93, 2003 Feb.
Article in English | MEDLINE | ID: mdl-12574268

ABSTRACT

The diagnosis of human cases of tularemia often relies upon the demonstration of an antibody response to Francisella tularensis or the direct culturing of the bacteria from the patient. Antibody response is not detectable until 2 weeks or more after infection, and culturing requires special media and suspicion of tularemia. In addition, handling live Francisella poses a risk to laboratory personnel due to the highly infectious nature of this pathogen. In an effort to develop a rapid diagnostic assay for tularemia, we investigated the use of TaqMan 5' hydrolysis fluorogenic PCR to detect the organism in tissues of infected mice. Mice were infected to produce respiratory tularemia. The fopA and tul4 genes of F. tularensis were amplified from infected spleen, lung, liver, and kidney tissues sampled over a 5-day period. The samples were analyzed using the laboratory-based Applied Biosystems International 7900 and the Smiths Detection-Edgewood BioSeeq, a hand-held portable fluorescence thermocycler designed for use in the field. A comparison of culturing and PCR for detection of bacteria in infected tissues shows that culturing was more sensitive than PCR. However, the results for culture take 72 h, whereas PCR results were available within 4 h. PCR was able to detect infection in all the tissues tested. Lung tissue showed the earliest response at 2 days when tested with the ABI 7900 and in 3 days when tested with the BioSeeq. The results were in agreement between the ABI 7900 and the BioSeeq when presented with the same sample. Template preparation may account for the loss of sensitivity compared to culturing techniques. The hand-held BioSeeq thermocycler shows promise as an expedient means of forward diagnosis of infection in the field.


Subject(s)
Francisella tularensis/isolation & purification , Polymerase Chain Reaction/methods , Animals , Female , Francisella tularensis/genetics , Mice , Mice, Inbred BALB C , Quality Control , Reagent Kits, Diagnostic , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...