Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Technol ; 44(12): 1822-1837, 2023 May.
Article in English | MEDLINE | ID: mdl-34859740

ABSTRACT

Vertical up-flow-constructed wetlands integrating with microbial fuel cell (VFCW-MFC) were evaluated for NH4+-N removal and bioelectricity recovery. The experiments were carried out in lab-scale VFCW-MFC microcosms treating synthetic domestic wastewater under different operational conditions of pH, hydraulic retention time, and mass loading rate. Effects of wild ornamental grass (Cenchrus setaceus) on treatment performance and voltage output were investigated simultaneously. Experiments demonstrated that the neutral pH of influents favoured NH4+-N removal and power generation. Extended retention time improved treatment capacity and power output but likely depended on the substrate availability. COD removal and power output increased, while NH4+-N removal decreased with increasing mass loading rates. At the loading rate of 88.31 mg COD/L.day, planted VFCW-MFCs exhibited better NH4+-N treatment performance (36.9%) and higher voltage output (132%-143%) than unplanted systems. Plants did not affect the COD removal efficiency of VFCW-MFCs (>95%). Power density was in the range of 1.26-1.59 mW/m2 in planted microcosms with a maximum CE of 13.6%. The anode layer accounted for a major proportion of NH4+-N removal in VFCW-MFCs. This study implies that NH4+-N in domestic wastewaters with relatively high COD:N ratios can be treated effectively in up-flow CW-MFCs via anaerobic processes, including anammox and heterotrophic denitrifying processes. The mass loading rate could be a critical parameter to balance different microbial processes, thus, coincidently determining the potential of power recovery from wastewaters.


Subject(s)
Bioelectric Energy Sources , Wastewater , Wetlands , Electrodes , Electricity
2.
Transbound Emerg Dis ; 66(6): 2507-2516, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31357255

ABSTRACT

Vietnamese poultry are host to co-circulating subtypes of avian influenza viruses, including H5N1 and H9N2, which pose a great risk to poultry productivity and to human health. AIVs circulate throughout the poultry trade network in Vietnam, with live bird markets being an integral component to this network. Traders at LBMs exhibit a variety of trading practices, which may influence the transmission of AIVs. We identified trading practices that impacted on AIV prevalence in chickens marketed in northern Vietnamese LBMs. We generated sequencing data for 31 H9N2 and two H5N6 viruses. Viruses isolated in the same LBM or from chickens sourced from the same province were genetically closer than viruses isolated in different LBMs or from chickens sourced in different provinces. The position of a vendor in the trading network impacted on their odds of having AIV-infected chickens. Being a retailer and purchasing chickens from middlemen was associated with increased odds of infection, whereas odds decreased if vendors purchased chickens directly from large farms. Odds of infection were also higher for vendors having a greater volume of ducks unsold per day. These results indicate how the spread of AIVs is influenced by the structure of the live poultry trading network.


Subject(s)
Commerce , Influenza in Birds/epidemiology , Poultry Products , Poultry , Animals , High-Throughput Nucleotide Sequencing , Humans , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H5N1 Subtype/isolation & purification , Influenza A Virus, H9N2 Subtype/genetics , Influenza A Virus, H9N2 Subtype/isolation & purification , Polymerase Chain Reaction , Prevalence , RNA, Viral/analysis , Risk Factors , Vietnam/epidemiology
3.
J Infect Dis ; 216(suppl_4): S529-S538, 2017 09 15.
Article in English | MEDLINE | ID: mdl-28934457

ABSTRACT

Mutation and reassortment of highly pathogenic avian influenza A(H5N1) viruses at the animal-human interface remain a major concern for emergence of viruses with pandemic potential. To understand the relationship of H5N1 viruses circulating in poultry and those isolated from humans, comprehensive phylogenetic and molecular analyses of viruses collected from both hosts in Vietnam between 2003 and 2010 were performed. We examined the temporal and spatial distribution of human cases relative to H5N1 poultry outbreaks and characterized the genetic lineages and amino acid substitutions in each gene segment identified in humans relative to closely related viruses from avian hosts. Six hemagglutinin clades and 8 genotypes were identified in humans, all of which were initially identified in poultry. Several amino acid mutations throughout the genomes of viruses isolated from humans were identified, indicating the potential for poultry viruses infecting humans to rapidly acquire molecular markers associated with mammalian adaptation and antiviral resistance.


Subject(s)
Influenza A Virus, H5N1 Subtype/isolation & purification , Influenza in Birds/epidemiology , Influenza, Human/epidemiology , Amino Acid Sequence , Animals , Drug Resistance, Multiple, Viral , Genotype , Genotyping Techniques , Humans , Influenza A Virus, H5N1 Subtype/genetics , Influenza in Birds/drug therapy , Influenza in Birds/transmission , Influenza, Human/drug therapy , Pandemics , Phylogeny , Poultry/virology , RNA, Viral/genetics , Sequence Analysis, RNA , Spatio-Temporal Analysis , Vietnam/epidemiology , Viral Proteins/genetics
4.
Virology ; 444(1-2): 12-20, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23849789

ABSTRACT

Phylogenetic analyses of 169 influenza A(H5N1) virus genomes were conducted for samples collected through active surveillance and outbreak responses in Vietnam between September 2010 and September 2012. While clade 1.1 viruses persisted in southern regions, three genetically distinct subgroups of clade 2.3.2.1 were found in northern and central Vietnam. The identification of each subgroup corresponded with detection of novel reassortants, likely due to their overlapping circulation throughout the country. While the previously identified clade 1.1 and A/Hubei/1/2010-like 2.3.2.1 genotypes remained the predominant viruses detected, four viruses were found to be reassortants between A/Hubei/1/2010-like (HA, NA, PB2, PB1, PA, NP) and A/duck/Vietnam/NCVD-885/2010-like (M, NS) viruses and one virus was identified as having A/duck/Vietnam/NCVD-885/2010-like HA, NA, PB1, and NP with A/Hubei/1/2010-like PB2 and PA genes. Additionally, clade 2.3.2.1 A/Hong Kong/6841/2010-like viruses, first detected in mid-2012, were identified as reassortants comprised of A/Hubei/1/2010-like PB2 and PA and A/duck/Vietnam/NCVD-885/2010-like PB1, NP, NA, M, NS genes.


Subject(s)
Influenza A Virus, H5N1 Subtype/classification , Influenza A Virus, H5N1 Subtype/genetics , Influenza in Birds/virology , Phylogeography , RNA, Viral/genetics , Reassortant Viruses/classification , Reassortant Viruses/genetics , Animals , Cluster Analysis , Genotype , Influenza A Virus, H5N1 Subtype/isolation & purification , Molecular Sequence Data , Poultry , Real-Time Polymerase Chain Reaction , Reassortant Viruses/isolation & purification , Sequence Analysis, DNA , Vietnam
5.
Virology ; 432(2): 405-16, 2012 Oct 25.
Article in English | MEDLINE | ID: mdl-22818871

ABSTRACT

We report on the genetic analysis of 213 highly pathogenic avian influenza (HPAI) H5N1 viruses isolated from poultry in Vietnam between 2007 and 2010. Phylogenetic analyses of the viral genomes revealed 38 distinct viral genotypes, 29 were novel and 9 were reported in Vietnam or neighboring countries in recent years. Viruses from only six genotypes persisted beyond one season or year. Thus, most reassortant viruses were transient, suggesting that such genotypes lacked significant fitness advantages. Viruses with clade 2.3.2.1 HA were re-introduced into Vietnam in 2009 and their prevalence rose steeply towards the end of 2010. Clade 2.3.4-like viruses (genotype V) were predominant in northern Vietnam and caused the majority of zoonotic infections, whereas clade 1.1 (genotype Z) viruses were only detected in the Mekong delta region, in southern Vietnam. Antigenic analysis of representative viruses from the four clades indicated substantial drift.


Subject(s)
Chickens/virology , Disease Outbreaks , Ducks/virology , Evolution, Molecular , Influenza A Virus, H5N1 Subtype/pathogenicity , Influenza in Birds/epidemiology , Poultry Diseases/epidemiology , Animals , Genotype , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Humans , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H5N1 Subtype/isolation & purification , Influenza in Birds/virology , Influenza, Human/epidemiology , Phylogeny , Poultry Diseases/virology , Prevalence , Reassortant Viruses/genetics , Vietnam/epidemiology , Zoonoses/epidemiology , Zoonoses/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...