Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 7(8)2021 Feb.
Article in English | MEDLINE | ID: mdl-33608281

ABSTRACT

Creating seamless heterostructures that exhibit the quantum Hall effect and superconductivity is highly desirable for future electronics based on topological quantum computing. However, the two topologically robust electronic phases are typically incompatible owing to conflicting magnetic field requirements. Combined advances in the epitaxial growth of a nitride superconductor with a high critical temperature and a subsequent nitride semiconductor heterostructure of metal polarity enable the observation of clean integer quantum Hall effect in the polarization-induced two-dimensional (2D) electron gas of the high-electron mobility transistor. Through individual magnetotransport measurements of the spatially separated GaN 2D electron gas and superconducting NbN layers, we find a small window of magnetic fields and temperatures in which the epitaxial layers retain their respective quantum Hall and superconducting properties. Its analysis indicates that in epitaxial nitride superconductor/semiconductor heterostructures, this window can be significantly expanded, creating an industrially viable platform for robust quantum devices that exploit topologically protected transport.

2.
Small ; 14(44): e1802563, 2018 11.
Article in English | MEDLINE | ID: mdl-30286280

ABSTRACT

Drug delivery to a specific site in the body typically relies on the use of targeting agents that recognize a unique biomarker. Unfortunately, it is often difficult to identify unique molecular signatures that exist only at the site of interest. An alternative strategy is to deliver energy (e.g., light) to locally trigger release from a drug carrier; however, the use of this approach is limited because energy delivery to deep tissues is often impractical or invasive. In this work, radiofrequency-responsive superparamagnetic iron oxide nanoparticles (SPIONs) are used to trigger drug release from nanoscale vesicles. Because the body is inherently nonmagnetic, this approach allows for deep tissue targeting. To overcome the unfavorable meter-scale diffraction limit of SPION-compatible radiofrequency (RF) fields, a strong static gating field containing a sharp zero point is superimposed on the RF field. Only drug carriers that are at or near the zero point are susceptible to RF-triggered drug release, thereby localizing drug delivery with millimeter-scale resolution. This approach induces >40% drug release from thermally responsive doxorubicin-loaded liposomes within a 3.2 mm radius of the zero point with <10% release in the surrounding area, leading to a >2.5 therapeutic index in Huh 7 hepatocellular carcinoma cells.


Subject(s)
Drug Carriers/chemistry , Drug Delivery Systems/methods , Nanoparticles/chemistry , Doxorubicin/analogs & derivatives , Doxorubicin/chemistry , Drug Liberation , Ferric Compounds/chemistry , Polyethylene Glycols/chemistry
3.
ACS Appl Mater Interfaces ; 8(3): 1667-75, 2016 Jan 27.
Article in English | MEDLINE | ID: mdl-26741279

ABSTRACT

In this work, we studied the evolution and transport of the native oxides during the atomic layer deposition (ALD) of TiO2 on GaAs(100) from tetrakis dimethyl amino titanium and H2O. Arsenic oxide transport through the TiO2 film and removal during the ALD process was investigated using transmission Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). Experiments were designed to decouple these processes by utilizing their temperature dependence. A 4 nm TiO2 layer was initially deposited on a native oxide surface at 100 °C. Ex situ XPS confirmed that this step disturbed the interface minimally. An additional 3 nm TiO2 film was subsequently deposited at 150 to 250 °C with and without an intermediate thermal treatment step at 250 °C. Arsenic and gallium oxide removal was confirmed during this second deposition, leading to the inevitable conclusion that these oxides traversed at least 4 nm of film so as to react with the precursor and its surface reaction/decomposition byproducts. XPS measurements confirmed the relocation of both arsenic and gallium oxides from the interface to the bulk of the TiO2 film under normal processing conditions. These results explain the continuous native oxide removal observed for alkyl-amine precursor-based ALD processes on III-V surfaces and provide further insight into the mechanisms of film growth.

SELECTION OF CITATIONS
SEARCH DETAIL
...