Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(11): e31835, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38947454

ABSTRACT

During the measurement of multiphase flow in low yield oil wells, the liquid volume will vary with the operating characteristics of the pumping unit. Using the pulsating characteristics of the up and down strokes of a pumping unit, the flow rate is measured when there is a flow rate on the up stroke, and the water content is measured when the fluid is stationary on the down stroke. In this paper, the heat transfer method is used to measure the water content of the oil water mixture during the down stroke process. At this time, the water content can be expressed as the instantaneous water content of the oil well. Firstly, the feasibility of measuring water content using heat transfer method is demonstrated theoretically, and then the temperature change of the heating probe PT300 is simulated. Finally, the actual temperature of PT300 is measured experimentally. Comparing the experimental value with the simulation value, the calculated measurement error is within 1.27 %, which indicates that the heat transfer method is feasible for measuring water content. Using the same single sensor to measure oil water two-phase flow using the pulsation characteristics of the up and down strokes of a pumping unit is a major innovation in this paper. And lays a foundation for the detection of multiphase flow using heat transfer methods. The successful implementation of the text heat transfer method for measuring water content has broken the previous situation of multiple sensor detection, simplified the structure of multiphase flow instruments, and extended the life of the instrument.

2.
Sci Rep ; 14(1): 12572, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822046

ABSTRACT

This study investigates the gas-liquid two-phase counter-current flow through a vertical annulus, a phenomenon prevalent across numerous industrial fields. The presence of an inner pipe and varying degrees of eccentricity between the inner and outer pipes often blur the clear demarcation of flow regime boundaries. To address this, we designed a vertical annulus with adjustable eccentricity (outer and inner diameters of 125 mm and 75 mm, respectively). We conducted gas-liquid counter-current flow experiments under specific conditions: gas superficial velocity ranging from 0.06 to 5.04 m/s, liquid superficial velocity from 0.01 to 0.25 m/s, and five levels of eccentricity (e = 0, 0.25, 0.5, 0.75, 1). We collected differential pressure data at two distinct height distances (DP1: 50 mm and DP2: 1000 mm). We used vectors, composed of both the probability density functions (PDFs) of the differential pressure signals and the power spectral density (PSD) reduced via Principal Component Analysis, as features. Using the CFDP clustering algorithm-based on local density-we clustered the flow regimes of the experimental data, thereby achieving an objective and consistent identification of the flow regime of gas-liquid two-phase counter-current flow in a vertical annulus. Our analysis reveals that for DP1, the main differences in the PSD of various flow regimes occur within the 0.5-1 Hz range. Among the three flow regimes involved, the slug flow exhibits the highest power intensity, followed by the bubbly flow, with the churn flow having the least. In terms of differential pressure distribution, the bubbly and churn flows have a concentrated distribution, while the slug flow is more dispersed. For DP2, the PSD differences primarily exist within the 0.5-2 Hz range. The churn flow has the highest power intensity, followed by the slug flow, with the bubbly flow being the weakest. Here, the bubbly flow's differential pressure distribution is concentrated, while the slug and churn flows are more dispersed. Based on the results of the flow regime classification, we generated a flow regime map and analyzed the influence of annulus eccentricity on the flow regime. We found that in most cases, pipe eccentricity does not significantly affect the flow regime. However, in the transition region-such as the bubbly to slug flow transition zone-flows with medium eccentricity values (e = 0.5, 0.75) are more likely to transition to slug flow. We compared the visual recognition results of flow regimes with the clustering results. 4.04% of the total samples showed different results from visual recognition and clustering, primarily located in the flow regime transition area. Since visually distinguishing flow regimes in these areas is typically challenging, our methodology offers an objective classification approach for gas-liquid two-phase counter-current flow in a vertical annulus.

3.
Sensors (Basel) ; 18(8)2018 Aug 17.
Article in English | MEDLINE | ID: mdl-30126138

ABSTRACT

Borehole transient electromagnetic (TEM) techniques have been proven to be efficient for nondestructive evaluations (NDEs) of metal casings using eddy-current properties. However, physical limitations and bad borehole conditions restrict the use of eddy-current sensors, which makes downhole casing inspections very different from those of conventional NDE systems. In this paper, we present a uniform linear multi-coil array-based borehole TEM system for NDEs of downhole casings. On the basis of the borehole TEM signal model, a numerical multi-coil array approach using the Gauss⁻Legendre quadrature is derived. The TEM response can be divided into two independent parts related to the transmitting-receiving distance (TRD) and the observation time and casing thickness. Using this property, the signal received by the multi-coil array is weighted to cancel the influence of the TRDs of the different array elements to obtain the optimal response according to the linearly constrained minimum variance criterion, which can be shown to be identical to that of achieving the maximum signal-to-noise ratio. The effectiveness of the proposed method was verified by applying the uniform linear multi-coil array to a borehole TEM system for NDEs of oil-well casings. Field experiments were conducted, and the results demonstrate the effectiveness of the proposed method.

4.
Sensors (Basel) ; 17(8)2017 Aug 09.
Article in English | MEDLINE | ID: mdl-28792448

ABSTRACT

Transient electromagnetic (TEM) techniques are widely used in the field of geophysical prospecting. In borehole detection, the nondestructive inspection (NDI) of a metal pipe can be performed efficiently using the properties of eddy currents. However, with increasing concern for safety in oil and gas production, more than one string of pipe is used to protect wellbores, which complicates data interpretation. In this paper, an auxiliary sensor-based borehole TEM system for the NDI of multipipe strings is presented. On the basis of the characteristics of the borehole TEM model, we investigate the principle behind the NDI of multipipe strings using multiple time slices of induced electromotive force (EMF) in a single sensor. The results show that the detection performance of NDI is strongly influenced by eddy-current diffusion in the longitudinal direction. To solve this problem, we used time slices of the induced EMF in both the main and auxiliary sensors. The performance of the proposed system was verified by applying it to an oil well with a production casing and liner. Moreover, field experiments were conducted, and the results demonstrate the effectiveness of the proposed method.

SELECTION OF CITATIONS
SEARCH DETAIL
...