Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Food Funct ; 12(1): 133-143, 2021 Jan 07.
Article in English | MEDLINE | ID: mdl-33283804

ABSTRACT

Obesity has a serious effect on human health. It relates to metabolic syndrome, including the associated disorders such as type 2 diabetes, heart disease, stroke and hyperemia. The peroxisome proliferator-activated receptors (PPARs) are important receptors to control fat metabolism in the human body. Because of the safety concerns of synthetic drugs targeting PPARs, ligands from natural sources have drawn interest. Earlier, we have found high PPAR activities in extracts from Agaricus bisporus (white button mushroom, WBM). WBM contains a wide range of candidate compounds which could be agonists of PPARs. To identify which compounds are responsible for PPAR activation by WBM extracts, we used fractionation coupled to effect-directed analysis with reporter gene assays specific for all three PPARs for purification and LC/MS-TOF and NMR for compound identification in purified active fractions. Surprisingly, we identified the relatively common dietary fatty acid, linoleic acid, as the main ligand of PPARs in WBM. Possibly, the relatively low levels of linoleic acid in WBM are sufficient and instrumental in inducing its anti-obesogenic effects, avoiding high energy intake and negative health effects associated with high levels of linoleic acid consumption. However, it could not be excluded that a minor relatively potent compound contributes towards PPAR activation, while the anti-obesity effects of WBM may be further enhanced by receptor expression modulating compounds or compounds with completely PPAR unrelated modes of action.


Subject(s)
Agaricus/metabolism , Peroxisome Proliferator-Activated Receptors/agonists , Plant Extracts/pharmacology , Cells, Cultured , Humans
2.
Environ Technol ; 40(17): 2215-2224, 2019 Jul.
Article in English | MEDLINE | ID: mdl-28675988

ABSTRACT

Isolation of extracellular polymeric substances (EPSs) producing bacterial strains capable of using sludge as low-cost growth substrate was carried out in this study. A total of 110 EPS-producing strains were isolated from different sources, which include sludge of beer and winery wastewater treatment plant (WWTP); young, 2-month-old and 10-year-old leachate. Thirty-seven isolated strains showed good growth in sludge medium with cell count varying from 106 to 1010 most probable number (MPN)/mL and total EPS concentration from 2737 to 6639 mg/L. Twenty-one strains produced EPS with high flocculation activity (FAmax varied from 72.0% to 80.2%). The highest FAmax (80.2%) was observed with EPS produced by strain BES 19, which was isolated from sludge of beer WWTP. Sludge of beer WWTP, young leachate and 10-year-old leachate were good sources for isolation of EPS-producing bacteria.


Subject(s)
Sewage , Wastewater , Bacteria , Extracellular Polymeric Substance Matrix , Flocculation
3.
Microb Biotechnol ; 11(6): 1137-1156, 2018 11.
Article in English | MEDLINE | ID: mdl-30117290

ABSTRACT

The herbicide 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) was a major component of Agent Orange, which was used as a defoliant in the Vietnam War. Little is known about its degradation under anoxic conditions. Established enrichment cultures using soil from an Agent Orange bioremediation plant in southern Vietnam with pyruvate as potential electron donor and carbon source were shown to degrade 2,4,5-T via ether cleavage to 2,4,5-trichlorophenol (2,4,5-TCP), which was further dechlorinated to 3,4-dichlorophenol. Pyruvate was initially fermented to hydrogen, acetate and propionate. Hydrogen was then used as the direct electron donor for ether cleavage of 2,4,5-T and subsequent dechlorination of 2,4,5-TCP. 16S rRNA gene amplicon sequencing indicated the presence of bacteria and archaea mainly belonging to the Firmicutes, Bacteroidetes, Spirochaetes, Chloroflexi and Euryarchaeota. Desulfitobacterium hafniense was identified as the dechlorinating bacterium. Metaproteomics of the enrichment culture indicated higher protein abundances of 60 protein groups in the presence of 2,4,5-T. A reductive dehalogenase related to RdhA3 of D. hafniense showed the highest fold change, supporting its function in reductive dehalogenation of 2,4,5-TCP. Despite an ether-cleaving enzyme not being detected, the inhibition of ether cleavage but not of dechlorination, by 2-bromoethane sulphonate, suggested that the two reactions are catalysed by different organisms.


Subject(s)
2,4,5-Trichlorophenoxyacetic Acid/metabolism , Desulfitobacterium/metabolism , Herbicides/metabolism , Methane/metabolism , 2,4,5-Trichlorophenoxyacetic Acid/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biodegradation, Environmental , Culture Media/metabolism , Desulfitobacterium/classification , Desulfitobacterium/genetics , Desulfitobacterium/isolation & purification , Halogenation , Herbicides/chemistry , Soil Microbiology , Vietnam
SELECTION OF CITATIONS
SEARCH DETAIL
...