Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; : e202407186, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38837631

ABSTRACT

Although natural sunlight is one of the most abundant and sustainable energy resources, only a fraction of its energy is currently harnessed and utilized in photoactive systems. The development of molecular photoswitches that can be directly activated by sunlight is imperative for unlocking the full potential of solar energy and addressing the growing energy demands. Herein, we designed a series of 2-amino-1,3-bis-azopyrazoles that features a coupled πn system, resulting in a pronounced redshift in its spectral absorption, reaching up to 661 nm in the red region. By varying the amino substituents of these molecules, highly efficient E→Z photoisomerization under unfiltered sunlight can be achieved, with yields of up to 88.4%. Moreover, the Z,Z-isomers have high thermal stability with half-lives from days to years at room temperature. The introduction of ortho-amino substitutions and meta-bisazo units leads to a reversal of the n-π* and πn-π* transitions on the energy scale. This change provides a new perspective for further tuning the visible absorption of azo-switches by utilizing the πn-π* band instead of the conventional n-π* band. These results suggest that photoresponsive systems can be powered by sunlight instead of traditional artificial lights, thereby paving the way for sustainable smart materials and devices.

2.
Angew Chem Int Ed Engl ; : e202404528, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38722260

ABSTRACT

Natural photoactive systems have evolved to harness broad-spectrum light from solar radiation for critical functions such as light perception and photosynthetic energy conversion. Molecular photoswitches, which undergo structural changes upon light absorption, are artificial photoactive tools widely used for developing photoresponsive systems and converting light energy. However, photoswitches generally need to be activated by light of specific narrow wavelength ranges for effective photoconversion, which limits their ability to directly work under sunlight and to efficiently harvest solar energy. Here, focusing on azo-switches-the most extensively studied photoswitches, we demonstrate effective solar E→Zphotoisomerization with photoconversions exceeding 80% under unfiltered sunlight. These sunlight-driven azo-switches are developed by rendering the absorption of E isomers overwhelmingly stronger than that of Z isomers across a broad ultraviolet to visible spectrum. This unusual type of spectral profile is realized by a simple yet highly adjustable molecular design strategy, enabling the fine-tuning of spectral window that extends light absorption beyond 600 nm. Notably, back-photoconversion can be achieved without impairing the forward solar isomerization, resulting in unique light-reversible solar switches. Such exceptional solar chemistry of photoswitches provides unprecedented opportunities for developing sustainable light-driven systems and efficient solar energy technologies.

3.
ChemSusChem ; 16(18): e202300582, 2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37278140

ABSTRACT

Photoswitches can absorb solar photons and store them as chemical energy by photoisomerization, which is regarded as a promising strategy for photochemical solar energy storage. Although many efforts have been devoted to photoswitch discovery, the solar efficiency, a critical fundamental parameter assessing the solar energy conversion ability, has attracted little attention and remains to be studied comprehensively. Here we provide a systematic evaluation of the solar efficiency of typical azo-switches including azobenzenes and azopyrazoles, and gain a comprehensive understanding on its decisive factors. All the efficiencies are found below 1.0 %, far from the proposed limits for molecular solar thermal energy storage systems. Azopyrazoles exhibit remarkably higher solar efficiencies (0.59-0.94 %) than azobenzenes (0.11-0.43 %), benefiting from largely improved quantum yield and photoisomerization yield. Light filters can be used to improve the isomerization yield but inevitably narrow the usable range of solar spectrum, and these two contradictory effects ultimately reduce solar efficiencies. We envision this conflict could be resolved through developing azo-switches that afford high isomerization yields by absorbing wide-spectrum solar energy. We hope this work could promote more efforts to improve the solar efficiency of photoswitches, which is highly relevant to the prospect for future applications.

4.
Angew Chem Int Ed Engl ; 62(24): e202301992, 2023 Jun 12.
Article in English | MEDLINE | ID: mdl-36861377

ABSTRACT

Following the progress on mono-heteroaryl azo switches (Het-N=N-Ph), a few bis-heteroaryl azo switches (Het-N=N-Het) have been studied recently, whereas the nonsymmetric bis-heteroaryl ones (Het1 -N=N-Het2 ) that can combine the respective merits of each heterocycle, have received little attention. Here we report thiazolylazopyrazoles as nonsymmetric bis-heteroaryl azo switches that combine the visible-light switching character of the thiazole ring and the ease of o-substitution of the pyrazole ring. Thiazolylazopyrazoles can achieve (near-)quantitative visible-light isomerization in both directions and long Z-isomer thermal half-lives of several days. In contrast to the drastically destabilizing effect of o-methylation, o-carbonylation of the pyrazole ring can remarkably stabilize Z isomers by inducing attractive intramolecular interactions (dispersion, C-H⋅⋅⋅N bond, and lone-pair⋅⋅⋅π interaction). Our work highlights the importance of the rational combination of two heterocycles and suitable structural substitution in developing bis-heteroaryl azo switches.

5.
J Org Chem ; 83(17): 10589-10594, 2018 Sep 07.
Article in English | MEDLINE | ID: mdl-30080043

ABSTRACT

A metal-free PhI(OAc)2-mediated method for the synthesis of acyl azides through oxidative cleavage of 1,3-diketones is described. This method is shown to have a broad substrate scope, providing a useful tool for multiproduct synthesis in a single procedure. A possible reaction pathway is proposed based on mechanistic studies.

SELECTION OF CITATIONS
SEARCH DETAIL
...