Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; 20(2): e2305220, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37658516

ABSTRACT

Herein, it is found that 3D transition metal dichalcogenide (TMD)-MoS2 nanoflowers-grown on 2D tungsten oxide-anchored graphene nanosheets (MoS2 @W-G) functions as a superior catalyst for the hydrogen evolution reaction (HER) under both acidic and alkaline conditions. The optimized weight ratio of MoS2 @W-G (MoS2 :W-G/1.5:1) in 0.5 M H2 SO4 achieves a low overpotential of 78 mV at 10 mA cm-2 , a small Tafel slope of 48 mV dec-1 , and a high exchange current density (0.321 mA cm⁻2 ). Furthermore, the same MoS2 @W-G composite exhibits stable HER performance when using real seawater, with Faradaic efficiencies of 96 and 94% in acidic and alkaline media, respectively. Density functional theory calculations based on the hybrid MoS2 @W-G structure model confirm that suitable hybridization of 3D MoS2 and 2D W-G nanosheets can lower the hydrogen adsorption: Gibbs free energy (∆GH* ) from 1.89 eV for MoS2 to -0.13 eV for the MoS2 @W-G composite. The excellent HER activity of the 3D/2D hybridized MoS2 @W-G composite arises from abundance of active heterostructure interfaces, optimizing the electrical configuration, thereby accelerating the adsorption and dissociation of H2 O. These findings suggest a new approach for the rational development of alternative 3D/2D TMD/graphene electrocatalysts for HER applications using seawater.

2.
Sci Total Environ ; 873: 162208, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36801406

ABSTRACT

In this work, a NiCo bimetallic ZIF (BMZIF) dodecahedron material has been synthesized by the precipitation approach and then used for simultaneously photoelectrocatalytic degradation of sulfamethoxazole (SMX) and hydrogen production. The combination of Ni/Co loading in ZIF structure increased the specific surface area 1484 (m2 g-1) and photocurrent density (0.4 mA cm-2), which can facilitate the good charge transfer efficiency. In presence of peroxymonosulfate (PMS, 0.1 mM), the complete degradation of SMX (10 mg L-1) was achieved at initial pH of 7 within 24 min, with the pseudo-first-order rate constants of 0.18 min-1 and TOC removal efficiency of 85 %. Radical scavenger experiments affirm that •OH radicals were the primary oxygen reactive species to drive the SMX degradation. Along with SMX degradation at the anode, the H2 production was observed at the cathode (140 µmol cm-2 h-1), which was 1.5 and 3 times higher than that of Co-ZIF and Ni-ZIF, respectively. The superior catalytic performance of BMZIF was assigned to the distinctive internal structure and synergistic effect between ZIF and Ni/Co bimetals, which improves light absorption and charge conduction efficiency. This study may provide insight into the new way to treat polluted water and simultaneously produce green energy using bimetallic ZIF in a PEC system.

3.
Sci Total Environ ; 869: 161441, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36638993

ABSTRACT

Biochar made from agricultural waste is gaining more attention in energy field due to its sustainability, low cost, apart from having high supercapacitance performance. Also, it has a wide range of environmental applications, including wastewater treatment, upgrading soil fertility, contaminant immobilization, and in situ carbon sequestration. The existing thermo-chemical methodologies for converting agricultural waste into a sustainable material i.e. biochar and the role of activation agents in enhancing the performance of these materials were critically analyzed and discussed. An overview of recent trends in agricultural waste-derived biochar for supercapacitor electrodes is highlighted in this review that emphasizes green circular economy for encouraging net-zero utility of agriculture waste biomass. The roles of various newly prepared "green" electrolytes in reducing the negative consequences of supercapacitor is also reviewed. The trashing of agricultural waste and the depletion of energy supplies has become a global concern, hurting the world's ecosystem and economy through pollution and a fuel crisis and hence the concept of a green circular economic model is also highlighted.

4.
ACS Appl Mater Interfaces ; 12(29): 32247-32258, 2020 Jul 22.
Article in English | MEDLINE | ID: mdl-32573196

ABSTRACT

Herein, a fluorescence turn off-on nanosensor has been successfully developed using functionalized N-doped carbon dots (N-CDs) as the label-free sensing probe for the ultrasensitive detection of Cu2+ ions first and then ciprofloxacin (CIP), one of the most commonly used antibiotics for disease control, in the presence of bipyridine. The homogeneous and narrowly distributed N-CDs with a mean size of 5.7 nm and a high quantum yield of 84% are fabricated via the hydrothermal method in the presence of citric acid and ethylenediamine as the carbon and nitrogen sources, respectively. The Cu2+ ions serve as both analyte and fluorescence quenchers in the sensing platform of N-CDs, and a good linear response to Cu2+ in the range of 0.01-0.35 µM with a limit of detection (LOD) of 0.076 nM is observed. Then, 0.35 µM Cu2+ is used as the fluorescence quencher of N-CDs to build up the fluorescence turn off-on sensing probe for the detection of CIP using bipyridine (bipy) as the linker for CIP and Cu2+ ions. The addition of CIP to the bipy-Cu@N-CD composites triggers the formation of CIP-bipy-Cu conjugate as well as the release of N-CDs, resulting in the recovery of fluorescence intensity after 6 min of incubation. The sensing probe exhibits a two-phase linear response to CIP in the concentration range of 0.05-1 and 1-50 µM with a LOD of 0.4 nM. In addition, the bipy-Cu@N-CD probe shows high sensitivity toward CIP over the 19 other interferences. Good recovery of 96-110% is also observed when 0.1-0.9 µM CIP is spiked into the real samples. Results obtained in this study clearly demonstrate a newly developed sensing platform with rapid detection of metal ions and antibiotics, which can open an avenue to develop highly efficient and robust sensing probes for the detection of metal ions, organic metabolites, and biomarkers in biological applications.


Subject(s)
Anti-Bacterial Agents/analysis , Ciprofloxacin/analysis , Fluorescent Dyes/chemistry , Water Pollutants, Radioactive/analysis , Carbon/chemistry , Copper/chemistry , Fluorescence , Lakes/chemistry , Particle Size , Pyridines/chemistry , Quantum Dots/chemistry , Spectrometry, Fluorescence , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...