Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 109
Filter
1.
Science ; 384(6701): eadk5382, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38870290

ABSTRACT

Polycystic ovary syndrome (PCOS), a prevalent reproductive disorder in women of reproductive age, features androgen excess, ovulatory dysfunction, and polycystic ovaries. Despite its high prevalence, specific pharmacologic intervention for PCOS is challenging. In this study, we identified artemisinins as anti-PCOS agents. Our finding demonstrated the efficacy of artemisinin derivatives in alleviating PCOS symptoms in both rodent models and human patients, curbing hyperandrogenemia through suppression of ovarian androgen synthesis. Artemisinins promoted cytochrome P450 family 11 subfamily A member 1 (CYP11A1) protein degradation to block androgen overproduction. Mechanistically, artemisinins directly targeted lon peptidase 1 (LONP1), enhanced LONP1-CYP11A1 interaction, and facilitated LONP1-catalyzed CYP11A1 degradation. Overexpression of LONP1 replicated the androgen-lowering effect of artemisinins. Our data suggest that artemisinin application is a promising approach for treating PCOS and highlight the crucial role of the LONP1-CYP11A1 interaction in controlling hyperandrogenism and PCOS occurrence.


Subject(s)
ATP-Dependent Proteases , Artemisinins , Cholesterol Side-Chain Cleavage Enzyme , Mitochondrial Proteins , Polycystic Ovary Syndrome , Animals , Female , Humans , Mice , Rats , Androgens/metabolism , Artemisinins/therapeutic use , Artemisinins/pharmacology , Cholesterol Side-Chain Cleavage Enzyme/metabolism , Cholesterol Side-Chain Cleavage Enzyme/genetics , Disease Models, Animal , Hyperandrogenism/drug therapy , Hyperandrogenism/metabolism , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Ovary/drug effects , Ovary/metabolism , Polycystic Ovary Syndrome/drug therapy , Proteolysis , Mice, Inbred C57BL , Young Adult , Adult , Rats, Sprague-Dawley , ATP-Dependent Proteases/genetics , ATP-Dependent Proteases/metabolism
2.
Acta Pharmacol Sin ; 44(10): 2103-2112, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37193754

ABSTRACT

Checkpoint inhibitors such as PD-1/PD-L1 antibody therapeutics are a promising option for the treatment of multiple cancers. Due to the inherent limitations of antibodies, great efforts have been devoted to developing small-molecule PD-1/PD-L1 signaling pathway inhibitors. In this study we established a high-throughput AlphaLISA assay to discover small molecules with new skeletons that could block PD-1/PD-L1 interaction. We screened a small-molecule library of 4169 compounds including natural products, FDA approved drugs and other synthetic compounds. Among the 8 potential hits, we found that cisplatin, a first-line chemotherapeutic drug, reduced AlphaLISA signal with an EC50 of 8.3 ± 2.2 µM. Furthermore, we showed that cisplatin-DMSO adduct, but not semplice cisplatin, inhibited PD-1/PD-L1 interaction. Thus, we assessed several commercial platinum (II) compounds, and found that bis(benzonitrile) dichloroplatinum (II) disturbed PD-1/PD-L1 interaction (EC50 = 13.2 ± 3.5 µM). Its inhibitory activity on PD-1/PD-L1 interaction was confirmed in co-immunoprecipitation and PD-1/PD-L1 signaling pathway blockade bioassays. Surface plasmon resonance assay revealed that bis(benzonitrile) dichloroplatinum (II) bound to PD-1 (KD = 2.08 µM) but not PD-L1. In immune-competent wild-type mice but not in immunodeficient nude mice, bis(benzonitrile) dichloroplatinum (II) (7.5 mg/kg, i.p., every 3 days) significantly suppressed the growth of MC38 colorectal cancer xenografts with increasing tumor-infiltrating T cells. These data highlight that platinum compounds are potential immune checkpoint inhibitors for the treatment of cancers.


Subject(s)
Cisplatin , Immune Checkpoint Inhibitors , Neoplasms , Animals , Humans , Mice , Antibodies , B7-H1 Antigen/metabolism , Cisplatin/pharmacology , Cisplatin/therapeutic use , Mice, Nude , Neoplasms/drug therapy , Programmed Cell Death 1 Receptor , Immune Checkpoint Inhibitors/pharmacology
3.
Sci China Life Sci ; 66(8): 1869-1887, 2023 08.
Article in English | MEDLINE | ID: mdl-37059927

ABSTRACT

Protein-biomolecule interactions play pivotal roles in almost all biological processes. For a biomolecule of interest, the identification of the interacting protein(s) is essential. For this need, although many assays are available, highly robust and reliable methods are always desired. By combining a substrate-based proximity labeling activity from the pupylation pathway of Mycobacterium tuberculosis and the streptavidin (SA)-biotin system, we developed the Specific Pupylation as IDEntity Reporter (SPIDER) method for identifying protein-biomolecule interactions. Using SPIDER, we validated the interactions between the known binding proteins of protein, DNA, RNA, and small molecule. We successfully applied SPIDER to construct the global protein interactome for m6A and mRNA, identified a variety of uncharacterized m6A binding proteins, and validated SRSF7 as a potential m6A reader. We globally identified the binding proteins for lenalidomide and CobB. Moreover, we identified SARS-CoV-2-specific receptors on the cell membrane. Overall, SPIDER is powerful and highly accessible for the study of protein-biomolecule interactions.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Proteins , Protein Binding
4.
Curr Probl Cancer ; 47(1): 100934, 2023 02.
Article in English | MEDLINE | ID: mdl-36580870

ABSTRACT

AIM: This is a prospective study of cutaneous adverse events (CAEs) in lung cancer patients treated by programmed cell death-1(PD-1) inhibitors and programmed cell death-ligand 1(PD-L1) inhibitors-based single or combination therapy. PATIENTS & METHODS: It were included that lung cancer patients who developed CAEs from January 2019 to July 2021 after applying PD-1/PD-L1 inhibitors in our institution. RESULTS: A total of 107 patients with 112 CAEs were enrolled, of which 71 patients received PD-1/PD-L1 inhibitors plus chemotherapy, 31 patients received PD-1/PD-L1 inhibitors plus anti-angiogenic/targeted therapy, and 5 patients received PD-1/PD-L1 inhibitors monotherapy. The median time to CAEs onset was 8.7w (0.3w-70.7w) for PD-1/PD-L1 inhibitors plus chemotherapy, 10.1w (0.4w-103.0w) for PD-1/PD-L1 inhibitors plus anti-angiogenic/targeted therapy, and 13.6w (0.7w-50.6w) for PD-1/PD-L1 inhibitors monotherapy. The most common CAEs were reactive cutaneous capillary endothelial proliferation (RCCEP) (30.8%, 33/107), followed by eczematous (21.5%, 23/107) and pruritus only (15.9%, 17/107). 7 patients (6.5%, 7/107) had grade 3-4 CAE. CONCLUSION: Most CAEs are mild to moderate and easily controlled. Early diagnosis and intervention for CAEs are important.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Prospective Studies , Carcinoma, Non-Small-Cell Lung/drug therapy , Immune Checkpoint Inhibitors/adverse effects , Programmed Cell Death 1 Receptor , Lung Neoplasms/drug therapy
5.
Future Oncol ; 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36519587

ABSTRACT

Aim: To analyze the incidence and characteristics of cutaneous adverse events (CAEs) in non-small-cell lung cancer patients treated with PD-1 inhibitor-based therapy. Methods: A total of 150 non-small-cell lung cancer patients under PD-1 inhibitor-based therapy from February 2018 to September 2021 were included and were followed up with regularly. Results: Over one-half of patients (88/150; 58.7%) had CAEs. Reactive cutaneous capillary endothelial proliferation, maculopapular rash and pruritus were the most common CAEs. The incidences of CAEs were 50.0 (18/36), 67.0 (50/75) and 51.3% (20/39) with PD-1 inhibitor monotherapy, PD-1 inhibitor in combination with chemotherapy and PD-1 inhibitor in combination with antivascular/targeted therapy, respectively. Conclusion: CAEs occur frequently in PD-1 inhibitor-based therapy but are generally tolerable.

6.
Fa Yi Xue Za Zhi ; 38(4): 495-499, 2022 Aug 25.
Article in English, Chinese | MEDLINE | ID: mdl-36426694

ABSTRACT

OBJECTIVES: To analyze the characteristics of diphenidol poisoning cases and to provide clues and technical means for the identification of such cases. METHODS: Biological samples of 9 deaths caused by diphenidol poisoning were detected by ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), and the characteristics of these cases were analyzed retrospectively. RESULTS: Most of the deaths caused by diphenidol poisoning were young females. The dosage was between 60 and 300 tablets, and the mass concentration of diphenidol in the postmortem blood ranged from 0.87 to 99.00 µg/mL. There was no correlation between the dosage and the concentration of diphenidol in the blood. CONCLUSIONS: Diphenidol poisoning has the characteristics of high concealment and lethality. More attention should be paid to suicide cases, and diphenidol should be recommended as a routine detection item to avoid missing detection.


Subject(s)
Tandem Mass Spectrometry , Female , Humans , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , Retrospective Studies , Administration, Oral
7.
MedComm (2020) ; 3(3): e136, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35711853

ABSTRACT

The CDK4/6-Rb axis is a crucial target of cancer therapy and several selective inhibitors of it have been approved for clinical application. However, current therapeutic efficacy evaluation mostly relies on anatomical imaging, which cannot directly reflect changes in drug targets, leading to a delay in the selection of optimal treatment. In this study, we constructed a novel fluorescent probe, CPP30-Lipo/CDKACT4, for real-time monitoring of CDK4 activity and the therapeutic efficacy of its inhibitor in HR+/HER2- breast cancer. CPP30-Lipo/CDKACT4 exhibited good optical stability and targetability. The signal of the probe in living cells decreased after CDK4 knockdown or palbociclib treatment. Moreover, the fluorescence intensity of the tumors after 7 days of palbociclib treatment was significantly lower than that before treatment, while no significant change in tumor diameter was observed under magnetic resonance imaging. Overall, we developed an innovative fluorescent probe that can monitor CDK4 activity and the early therapeutic response to CDK4 inhibitors in living cells and in vivo. It may provide a new strategy for evaluating antitumor therapeutic efficacy in a clinical context and for drug development.

8.
Fa Yi Xue Za Zhi ; 38(1): 98-109, 2022 Feb 25.
Article in English, Chinese | MEDLINE | ID: mdl-35725712

ABSTRACT

OBJECTIVES: To explore the research hotspots and development trends of the field of forensic drowning from 1991 to 2020 by bibliometrics methods. METHODS: Based on Web of Science, CNKI database, Wanfang Data knowledge service platform, python 3.9.2, CiteSpace 5.8.R3, Gephi 0.9.2, etc. were used to analyze the publishing trends, countries/regions, institutions, authors and topics of the study on drowning. RESULTS: A total of 631 English literature were obtained, including 59 articles from Chinese authors, and 386 Chinese literature were obtained. The Chinese and English journals with the largest number of related literatures were Chinese Journal of Forensic Science (80 articles) and Forensic Science International (106 articles), respectively. Japan published the most articles in English, and China ranked third. Osaka City Univ (Japan, 28 articles) published the most English articles, and Guangzhou Forens Sci Inst (China, 22 articles) ranked second. Among Chinese literature, Guangzhou Forens Sci Inst (32 articles) published the most. The topic analysis of Chinese and English literature showed that diatom examination, virtual autopsy, postmortem biochemical examination, the nature of death, and postmortem submersion interval were the hot spots of current research, but English literature had more studies on new technologies and methods, while Chinese literature was more inclined to practice, application and experience summary. CONCLUSIONS: The number of literature in forensic medicine on drowning is relatively stable. The scope of international and domestic collaborations in this field is still limited. The automated examination of diatoms, the establishment of diatom DNA barcodes and virtual autopsy will be the most important research hotspots in the coming period and are expected to achieve breakthroughs in drowning diagnosis, drowning location inference, postmortem submersion interval estimation, etc.


Subject(s)
Drowning , Bibliometrics , China/epidemiology , Drowning/diagnosis , Forensic Medicine , Humans , Publications
9.
Nanomedicine ; 43: 102555, 2022 07.
Article in English | MEDLINE | ID: mdl-35390525

ABSTRACT

The near-infrared fluorescence imaging has been integrated into the operating room to guide tumor resection, potentially reducing the positive margin rates in breast-conserving surgery (BCS). Relative to the widely used first near-infrared fluorescence imaging, imaging in the second near-infrared (NIR-II) region possesses higher contrast and deeper tissue penetration, particularly in the NIR-IIb window, offering many new opportunities for imaging-guided BCS. Here, we fabricated the c(RGDfC) functionalized erbium-based rare-earth nanoparticles (ErNPs@cRGD) with superior optical property in NIR-IIb region. Owing to deeper tissue penetration and efficient tumor targeting, ErNPs@cRGD-based NIR-IIb fluorescence imaging achieved enhanced signal-to-background ratios in tumor visualization, which was able to guide more complete tumor resection, identify multiple microtumors and distinguish malignant lesions from normal tissues in various mice models. Based on these, this NIR-IIb imaging strategy for surgical navigation can significantly reduce positive margin rates and improve prognosis, laying a foundation for the clinical resection of breast cancer.


Subject(s)
Breast Neoplasms , Nanoparticles , Surgery, Computer-Assisted , Animals , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , Breast Neoplasms/surgery , Female , Fluorescence , Humans , Mice , Nanoparticles/chemistry , Optical Imaging/methods , Surgery, Computer-Assisted/methods
10.
Int J Nanomedicine ; 17: 1343-1360, 2022.
Article in English | MEDLINE | ID: mdl-35345784

ABSTRACT

Purpose: Tumor-free surgical margin is crucial but challenging in breast-conserving surgery (BCS). Fluorescence imaging is a promising strategy for surgical navigation that can reliably assist the surgeon with visualization Of the tumor in real-time. Notably, finding an optimized fluorescent probe has been a challenging research topic. Herein, we developed a novel near-infrared (NIR) fluorescent probe based on tailored Hepatitis B Core virus-like protein (HBc VLP) and presented the preclinical imaging-guided surgery. Methods: The RGD-HBc160 VLP was synthesized by genetic engineering followed encapsulation of ICG via disassembly-reassembly. The applicability of the probe was tested for cell and tissue binding capacities through cell-based plate assays, xenograft mice model, and MMTV-PyVT mammary tumor transgenic mice. Subsequently, the efficacy of RGD-HBc160/ICG-guided surgery was evaluated in an infiltrative tumor-bearing mouse model. The protein-induced body's immune response was further assessed. Results: The prepared RGD-HBc160/ICG showed outstanding integrin αvß3 targeting ability in vitro and in vivo. After intravenous administration of probe, the fluorescence guidance facilitated more complete tumor resection and improved overall survival Of the infiltrative tumor-bearing mice. The probe also showed the excellent capability to differentiate between benign and malignant breast tissues in the mammary tumor transgenic mice. Interestingly, the ingenious tailoring of HBc VLP could not only endow its tumor-targeting ability towards integrin αvß3 but also significantly reduce the humoral and cellular immune response. Conclusion: The RGD-HBc160/ICG holds promise as an effective tool to delineate tumor margin. These results have translational potential to achieve margin-negative resection and improve the stratification of patients for a potentially curative.


Subject(s)
Breast Neoplasms , Hepatitis B Core Antigens , Surgery, Computer-Assisted , Animals , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , Breast Neoplasms/surgery , Female , Fluorescence , Humans , Integrin alphaVbeta3/metabolism , Mice
11.
Adv Sci (Weinh) ; 9(12): e2104728, 2022 04.
Article in English | MEDLINE | ID: mdl-35170876

ABSTRACT

Positive resection margin frequently exists in breast-conserving treatment (BCT) of early-stage breast cancer, and insufficient therapeutic efficacy is common during radiotherapy (RT) in advanced breast cancer patients. Moreover, a multimodal nanotherapy platform is urgently required for precision cancer medicine. Therefore, a biodegradable cyclic RGD pentapeptide/hollow virus-like gadolinium (Gd)-based indocyanine green (R&HV-Gd@ICG) nanoprobe is developed to improve fluorescence image-guided surgery and breast cancer RT efficacy. R&HV-Gd exhibits remarkably improved aqueous stability, tumor retention, and target specificity of ICG, and achieves outstanding magnetic resonance/second near-infrared (NIR-II) window multimodal imaging in vivo. The nanoprobe-based NIR-II fluorescence image guidance facilitates complete tumor resection, improves the overall mouse survival rate, and effectively discriminates between benign and malignant breast tissues in spontaneous breast cancer transgenic mice (area under the curve = 0.978; 95% confidence interval: 0.952, 1.0). Moreover, introducing the nanoprobe to tumors generated more reactive oxygen species under X-ray irradiation, improved RT sensitivity, and reduced mouse tumor progression. Notably, the nanoprobe is biodegradable in vivo and exhibits accelerated bodily clearance, which is expected to reduce the potential long-term inorganic nanoparticle toxicity. Overall, the nanoprobe provides a basis for developing precision breast cancer treatment strategies.


Subject(s)
Breast Neoplasms , Nanoparticles , Surgery, Computer-Assisted , Animals , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/radiotherapy , Breast Neoplasms/surgery , Female , Gadolinium , Humans , Indocyanine Green , Margins of Excision , Mice , Surgery, Computer-Assisted/methods
12.
Exp Gerontol ; 159: 111683, 2022 03.
Article in English | MEDLINE | ID: mdl-34995725

ABSTRACT

Histidine triad nucleotide-binding protein 1 (HINT1) is regarded as a haplo-insufficient tumour suppressor and is closely associated with many neuropsychiatric disorders, including major depressive disorders. In addition, HINT1 knockout (KO) mice exhibit anxiolytic-like behaviour, antidepression-like behaviour, and enhanced cognitive performance in several studies. However, it is still unclear whether aging contributes to these changes in the emotion and cognition of HINT1 KO mice. This study examined the role of aging in anxiety-like and depression-like behaviours and cognition behaviours in aged HINT1 KO mice compared with young HINT1 KO mice and their wild-type littermates, along with a number of molecular biological methods. In a battery of behavioural tests, aged wild-type mice showed increased anxiety-like and depression-like behaviours and decreased cognitive performance, along with lower expression levels of glutathione peroxidase, enhanced amount of malondialdehyde, and decreased expression levels of brain-derived neurotrophic factor and tyrosine kinase B in the hippocampus and PFC compared to young wild-type mice. HINT1 KO mice showed reduced anxiety-like and depression-like behaviours and enhanced cognitive performance compared to age-matched wild-type mice. In addition, HINT1 KO mice also showed increased GSH-Px and superoxide dismutase, and decreased malondialdehyde, together with enhanced BDNF and Trk-B expression in the hippocampus and PFC. However, when compared with young HINT1 KO mice, aged HINT1 KO mice did not show increased anxiety-like and depression-like behaviours. And there are no differences in the expression level of superoxide dismutase, malondialdehyde, BDNF, and Trk-B between aged and young HINT1 KO mice. In summary, HINT1 deficiency can counteract age-related emotion and cognition dysfunction.


Subject(s)
Depression , Depressive Disorder, Major , Animals , Anxiety/genetics , Behavior, Animal , Cognition , Depression/genetics , Mice , Mice, Knockout , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism
13.
Front Behav Neurosci ; 15: 690344, 2021.
Article in English | MEDLINE | ID: mdl-34177485

ABSTRACT

Major depressive disorder (MDD) is a severe, highly heterogeneous, and life-threatening psychiatric disease which affects up to 21% of the population worldwide. A new hypothesis suggests that the mitochondrial dysfunction causing oxidative stress (OS) and dysregulation of apoptosis in brain might be one of the key pathophysiological factors in MDD. Histidine triad nucleotide binding protein 1 (HINT1), which was first supposed to be protein kinase C (PKC) inhibitor, has been gradually demonstrated to be involved in diverse neuropsychiatric diseases. It still remains elusive that how HINT1 involves in depression. The present study utilized a rat model exposed to chronic mild stress (CMS) to explore the involvement of HINT1 in depression. Face validity, construct validity and predictive validity of CMS model were comprehensive evaluated in this study. Behavioral tests including sucrose preference test, open field test, and elevated plus maze and forced swimming test revealed that stressed rats displayed elevated level of anxiety and depression compared with the controls. CMS rats showed a significant decrease of superoxide dismutase, and a marked increase malondialdehyde levels in prefrontal cortex (PFC). We also found the CMS rats had elevated expression of HINT1, decreased levels of phosphorylated-PKC ε and aldehyde dehydrogenase-two (ALDH-2), and accumulated 4-hydroxynonenal (4HNE) in PFC. Moreover, CMS increased the levels of cleaved caspase-3 and Bax, and decreased the level of Bcl-2 in PFC. The alterations in behavior and molecule were prevented by antidepressant venlafaxine. These results demonstrated that HINT1 was involved in the CMS elicited OS and apoptosis in PFC, probably through the PKC ε/ALDH-2/4HNE pathway. The results suggest that the suppression of HINT1 might have potential as a novel therapeutic strategy for depression.

14.
Acta Pharmacol Sin ; 42(10): 1556-1566, 2021 Oct.
Article in English | MEDLINE | ID: mdl-33495516

ABSTRACT

Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by toxic aggregates of mutant huntingtin protein (mHTT) in the brain. Decreasing mHTT is a potential strategy for therapeutic purpose of HD. Valosin-containing protein (VCP/p97) is a crucial regulator of proteostasis, which regulates the degradation of damaged protein through proteasome and autophagy pathway. Since VCP has been implicated in pathogenesis of HD as well as other neurodegenerative diseases, small molecules that specifically regulate the activity of VCP may be of therapeutic benefits for HD patients. In this study we established a high-throughput screening biochemical assay for VCP ATPase activity measurement and identified gossypol, a clinical approved drug in China, as a novel modulator of VCP. Gossypol acetate dose-dependently inhibited the enzymatic activity of VCP in vitro with IC50 of 6.53±0.6 µM. We further demonstrated that gossypol directly bound to the interface between the N and D1 domains of VCP. Gossypol acetate treatment not only lowered mHTT levels and rescued HD-relevant phenotypes in HD patient iPS-derived Q47 striatal neurons and HD knock-in mouse striatal cells, but also improved motor function deficits in both Drosophila and mouse HD models. Taken together, gossypol acetate acted through a gain-of-function way to induce the formation of VCP-LC3-mHTT ternary complex, triggering autophagic degradation of mHTT. This study reveals a new strategy for treatment of HD and raises the possibility that an existing drug can be repurposed as a new treatment of neurodegenerative diseases.


Subject(s)
Autophagy/drug effects , Gossypol/therapeutic use , Huntingtin Protein/metabolism , Huntington Disease/drug therapy , Neuroprotective Agents/therapeutic use , Animals , Drosophila , Enzyme Inhibitors/therapeutic use , Female , HEK293 Cells , HeLa Cells , Humans , Huntingtin Protein/chemistry , Huntingtin Protein/genetics , Male , Mice , Microtubule-Associated Proteins/metabolism , Mutation , Protein Multimerization/drug effects , Proteolysis/drug effects , Valosin Containing Protein/antagonists & inhibitors , Valosin Containing Protein/metabolism
15.
Addict Biol ; 26(2): e12897, 2021 03.
Article in English | MEDLINE | ID: mdl-32171181

ABSTRACT

Drug addiction is a recurrent, chronic brain disease. The existing treatment methods have limitations, such as poor adherence and inability to completely avoid relapse. Histidine triad nucleotide-binding protein 1 (HINT1) is involved in many neuropsychiatric diseases, such as schizophrenia, pain, and drug dependence. Studies have confirmed that there is a genetic link between HINT1 and addictions such as nicotine and cocaine. However, there is no research on the role of HINT1 protein in morphine addiction at home and abroad. Thus, we designed this project by constructing different types of morphine addiction animal models, including conditioned place preference and behavioral sensitization. We comprehensively examined the participation of HINT1 protein in key brain regions associated with addiction, including prefrontal cortex, nucleus accumbens, corpus striatum, and hippocampus, in different stages of different models. In addition, we used HINT1 knockout mice to establish the above models and physical dependence model to investigate the effect of HINT1 protein deletion on morphine addiction-related behaviors. We found that HINT1 has varying degrees of involvement in different stages of multiple addictive animal models. The absence of HINT1 can attenuate morphine-mediated addictive behavior to a certain extent and can alleviate the withdrawal symptoms of morphine.


Subject(s)
Brain/drug effects , Morphine Dependence/pathology , Morphine/pharmacology , Narcotics/pharmacology , Nerve Tissue Proteins/drug effects , Animals , Drug Dosage Calculations , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Naloxone/pharmacology , Narcotic Antagonists/pharmacology , RNA, Messenger/biosynthesis , Real-Time Polymerase Chain Reaction , Substance Withdrawal Syndrome/pathology
16.
Acta Pharmacol Sin ; 42(5): 801-813, 2021 May.
Article in English | MEDLINE | ID: mdl-32796956

ABSTRACT

Grincamycins (GCNs) are a class of angucycline glycosides isolated from actinomycete Streptomyces strains that have potent antitumor activities, but their antitumor mechanisms remain unknown. In this study, we tried to identify the cellular target of grincamycin B (GCN B), one of most dominant and active secondary metabolites, using a combined strategy. We showed that GCN B-selective-induced apoptosis of human acute promyelocytic leukemia (APL) cell line NB4 through increase of ER stress and intracellular reactive oxygen species (ROS) accumulation. Using a strategy of combining phenotype, transcriptomics and protein microarray approaches, we identified that isocitrate dehydrogenase 1(IDH1) was the putative target of GCN B, and confirmed that GCNs were a subset of selective inhibitors targeting both wild-type and mutant IDH1 in vitro. It is well-known that IDH1 converts isocitrate to 2-oxoglutarate (2-OG), maintaining intracellular 2-OG homeostasis. IDH1 and its mutant as the target of GCN B were validated in NB4 cells and zebrafish model. Knockdown of IDH1 in NB4 cells caused the similar phenotype as GCN B treatment, and supplementation of N-acetylcysteine partially rescued the apoptosis caused by IDH1 interference in NB4 cells. In zebrafish model, GCN B effectively restored myeloid abnormality caused by overexpression of mutant IDH1(R132C). Taken together, we demonstrate that IDH1 is one of the antitumor targets of GCNs, suggesting wild-type IDH1 may be a potential target for hematological malignancies intervention in the future.


Subject(s)
Anthraquinones/pharmacology , Antineoplastic Agents/pharmacology , Enzyme Inhibitors/pharmacology , Glycosides/pharmacology , Isocitrate Dehydrogenase/antagonists & inhibitors , Animals , Anthraquinones/metabolism , Antineoplastic Agents/metabolism , Apoptosis/drug effects , Cell Line, Tumor , Endoplasmic Reticulum Stress/drug effects , Enzyme Inhibitors/metabolism , Glycosides/metabolism , Humans , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/metabolism , Ketoglutaric Acids/metabolism , Molecular Docking Simulation , Mutation , Protein Binding , Reactive Oxygen Species/metabolism , Zebrafish
17.
Huan Jing Ke Xue ; 41(4): 1779-1786, 2020 Apr 08.
Article in Chinese | MEDLINE | ID: mdl-32608685

ABSTRACT

To resolve the issue of existing municipal wastewater treatment plants (WWTPs) in China with an insufficient influent carbon source, a bench-scale A2/O process based on partial nitrification coupled with ANAMMOX was constructed by controlling aeration partition ratio, dissolved oxygen (DO) concentration, and sludge retention time (SRT). In this study, the nitrogen removal performance, nitrogen removal pathway, and microbial community structure of the system under different conditions were investigated. The results showed that the system had excellent nitrogen removal efficiency at low-C/N influent (C/N=5). The A2/O reactor had experienced the co-culture stage (Phase 1), screening stage (Phase 2-3), and enrichment stage (Phase 4) successively during the 140-day experiment, and the nitrogen removal pathway changed from nitrification and denitrification to partial nitrification coupled ANAMMOX in the end. The optimal removal efficiencies of 97.69% for NH4+-N and 87.83% for TN were obtained in the enrichment stage (Phase 4), and the effluent concentration of NH4+-N and TN were 1.20 mg·L-1 and 7.03 mg·L-1, respectively. Illumina MiSeq sequencing results showed that the enrichment of AOB including Nitrosomonas and Nitrosospira and the elimination of NOB including Nitrospira, Nitrococcus, and Nitrobacter were the main causes of achieving partial nitrification in the system. The enrichment of AnAOB including Candidatus Kuenenia and Candidatus Jettenia was the key point for the occurrence of ANAMMOX in the system, and thus, played an important role in the achievement of advanced nitrogen removal.

18.
Psychopharmacology (Berl) ; 237(8): 2345-2351, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32430517

ABSTRACT

BACKGROUND: Drug addiction is a chronically relapsing disorder in humans yet the underlying mechanism remained unclear. Recent studies suggested that histidine triad nucleotide binding protein1 (HINT1) may play significant roles in diverse neuropsychiatric diseases including drug addiction. METHODS: In the current study, we used different batches of mice to establish different stages of methamphetamine (METH)-induced behavioral sensitization (BS) to explore the dynamic changes throughout the process of addiction in different brain regions, including the prefrontal cortex (PFC), nucleus accumbens (NAc), caudate putamen (CPu), and hippocampus (Hip). In addition, we used HINT1 knockout (KO) mice to investigate the effect of HINT1 protein deletion on METH-induced BS. RESULTS: We found that in PFC of the METH group mice, the HINT1 expression level initially increased after development phase, and then dropped to the normal level during expression phase. However, there was no statistical difference in the HINT1 expression level in the other three encephalic regions (NAc, CPu, and Hip). The absence of HINT1 could promote METH-mediated addictive behavior to a certain extent, while the significant difference between genotypes only occurred in the development phase. CONCLUSIONS: Using the new technique, hip fractures were correctly predicted in 78% of cases compared with 36% when using the T-score. The accuracy of the prediction was not greatly reduced when using SSM and SAM (78% and 74% correct, respectively). Various geometric and BMD distribution traits were identified in the fractured and non-fractured groups.


Subject(s)
Behavior, Addictive/metabolism , Central Nervous System Stimulants/adverse effects , Locomotion/drug effects , Methamphetamine/adverse effects , Nerve Tissue Proteins/deficiency , Animals , Behavior, Addictive/psychology , Hippocampus/drug effects , Hippocampus/metabolism , Locomotion/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Nerve Tissue Proteins/genetics , Nucleus Accumbens/drug effects , Nucleus Accumbens/metabolism , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism
19.
Schizophr Res ; 222: 304-318, 2020 08.
Article in English | MEDLINE | ID: mdl-32439293

ABSTRACT

The histidine triad nucleotide binding protein 1 (HINT1) is closely related to many neuropsychiatric disorders. Clinical studies supported that mutations in the Hint1 gene correlated potentially with schizophrenia. In addition, Hint1 gene knockout (KO) mice exhibited hyperactivity induced by amphetamine and apomorphine. However, it is still unclear whether this animal model exhibits schizophrenia-like behaviors and, if so, their underlying mechanisms remain to be elucidated. Thus, our study sought to evaluate schizophrenia-like behaviors in Hint1-KO mice, and explore the associated changes in neuronal structural plasticity and schizophrenia-related molecules. A series of behavioral tests were used to compare Hint1-KO and their wild-type (WT) littermates, alongside a number of morphological and molecular biological methods. Relative to WT mice, Hint1-KO mice exhibited reduced social interaction behaviors, aggressive behavior, sensorimotor gating deficits, apathetic and self-neglect behaviors, and increased MK-801-induced hyperactivity. Hint1-KO mice also showed partly increased dendritic complexity in the hippocampus (Hip) relative to WT mice. Total glutamate was decreased in the medial prefrontal cortex, nucleus accumbens (NAc), and Hip of KO mice. Expression of NR1, NR2A, and D4R was decreased whereas that of D1R was increased in the NAc of KO relative to WT mice. The expression level of NR2B was increased whereas that of D1R was decreased in the Hip of KO mice. Hint1-KO mice exhibited schizophrenia-like behaviors. Partly increased dendritic complexity and dysfunction in both the dopaminergic and glutamatergic systems may be involved in the abnormalities in Hint1-KO mice.


Subject(s)
Nerve Tissue Proteins , Schizophrenia , Animals , Disease Models, Animal , Mice , Mice, Knockout , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Nucleus Accumbens/metabolism , Schizophrenia/genetics
20.
Acta Pharmacol Sin ; 41(9): 1246-1254, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32210356

ABSTRACT

Mitophagy is a degradative pathway that mediates the degradation of the entire mitochondria, and defects in this process are implicated in many diseases including cancer. In mammals, mitophagy is mediated by BNIP3L (also known as NIX) that is a dual regulator of mitochondrial turnover and programmed cell death pathways. Acute myeloid leukemia (AML) cells with deficiency of BNIP3L are more sensitive to mitochondria-targeting drugs. But small molecular inhibitors for BNIP3L are currently not available. Some immunomodulatory drugs (IMiDs) have been proved by FDA for hematologic malignancies, however, the underlining molecular mechanisms are still elusive, which hindered the applications of BNIP3L inhibition for AML treatment. In this study we carried out MS-based quantitative proteomics analysis to identify the potential neosubstrates of a novel thalidomide derivative CC-885 in A549 cells. In total, we quantified 5029 proteins with 36 downregulated in CRBN+/+ cell after CC-885 administration. Bioinformatic analysis showed that macromitophagy pathway was enriched in the negative pathway after CC-885 treatment. We further found that CC-885 caused both dose- and time-dependent degradation of BNIP3L in CRBN+/+, but not CRBN-/- cell. Thus, our data uncover a novel role of CC-885 in the regulation of mitophagy by targeting BNIP3L for CRL4CRBN E3 ligase-dependent ubiquitination and degradation, suggesting that CC-885 could be used as a selective BNIP3L degradator for the further investigation. Furthermore, we demonstrated that CC-885 could enhance AML cell sensitivity to the mitochondria-targeting drug rotenone, suggesting that combining CC-885 and mitochondria-targeting drugs may be a therapeutic strategy for AML patients.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Membrane Proteins/metabolism , Mitophagy/drug effects , Phenylurea Compounds/pharmacology , Proto-Oncogene Proteins/metabolism , Thalidomide/analogs & derivatives , Tumor Suppressor Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Cell Line, Tumor , Drug Synergism , HEK293 Cells , Humans , Proteasome Endopeptidase Complex/metabolism , Proteolysis/drug effects , Rotenone/pharmacology , Thalidomide/pharmacology , Ubiquitination/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...