Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 11(22)2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36432840

ABSTRACT

Mosses are an important component of the alpine shrub, but little is known about their contribution to ecosystem water and energy exchange, especially potential opportunities for alpine shrub expansion under a warming climate. We studied the role of mosses in alpine shrub evapotranspiration by conducting herb and moss removal experiments with different Potentilla fruticosa L. shrub coverage in the Qilian Mountains, Northwest China. The understory evapotranspiration was measured using lysimeters in different shrub coverage (dense shrub cover, medium shrub cover, and thin shrub cover) during the growing season of 2012. The understory evapotranspiration is about 1.61 mm per day in the control treatment (intact moss and herbs) during the growing season, and the evapotranspiration rates differed significantly between canopy covers. We found a 22% increase in evapotranspiration losses after removing the moss layer compared to the control treatment lysimeter with an intact moss layer in the shrub site. This suggests that most of the understory evaporation originated from the organic layer underlying the moss layer. Given this study's large moss evaporation rates, understory contributions cannot be ignored when interpreting eddy covariance data for the whole alpine ecosystem. Our results show that mosses may exert strong controls on understory water fluxes in alpine shrub meadow ecosystems and suggest that changes in moss cover may have significant consequences for season frozen soil thaw.

SELECTION OF CITATIONS
SEARCH DETAIL
...