Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cell Proteomics ; 14(12): 3299-309, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26435129

ABSTRACT

Questions concerning longitudinal data quality and reproducibility of proteomic laboratories spurred the Protein Research Group of the Association of Biomolecular Resource Facilities (ABRF-PRG) to design a study to systematically assess the reproducibility of proteomic laboratories over an extended period of time. Developed as an open study, initially 64 participants were recruited from the broader mass spectrometry community to analyze provided aliquots of a six bovine protein tryptic digest mixture every month for a period of nine months. Data were uploaded to a central repository, and the operators answered an accompanying survey. Ultimately, 45 laboratories submitted a minimum of eight LC-MSMS raw data files collected in data-dependent acquisition (DDA) mode. No standard operating procedures were enforced; rather the participants were encouraged to analyze the samples according to usual practices in the laboratory. Unlike previous studies, this investigation was not designed to compare laboratories or instrument configuration, but rather to assess the temporal intralaboratory reproducibility. The outcome of the study was reassuring with 80% of the participating laboratories performing analyses at a medium to high level of reproducibility and quality over the 9-month period. For the groups that had one or more outlying experiments, the major contributing factor that correlated to the survey data was the performance of preventative maintenance prior to the LC-MSMS analyses. Thus, the Protein Research Group of the Association of Biomolecular Resource Facilities recommends that laboratories closely scrutinize the quality control data following such events. Additionally, improved quality control recording is imperative. This longitudinal study provides evidence that mass spectrometry-based proteomics is reproducible. When quality control measures are strictly adhered to, such reproducibility is comparable among many disparate groups. Data from the study are available via ProteomeXchange under the accession code PXD002114.


Subject(s)
Chromatography, Liquid/methods , Peptides/isolation & purification , Proteins/metabolism , Proteomics/methods , Tandem Mass Spectrometry/methods , Animals , Cattle , Humans , Laboratories , Longitudinal Studies , Proteins/analysis , Quality Control , Reproducibility of Results , Surveys and Questionnaires
2.
Exp Cell Res ; 316(17): 2833-48, 2010 Oct 15.
Article in English | MEDLINE | ID: mdl-20599954

ABSTRACT

Morphological adaptations of vascular smooth muscle cells (VSMC) to the mechanically active environment in which they reside, are mediated by direct interactions with the extracellular matrix (ECM) which induces physiological changes at the intracellular level. This study aimed to analyze the effects of the ECM on RhoA-induced mechanical signaling that controls actin organization and focal adhesion formation. VSMC were transfected with RhoA constructs (wild type, dominant negative or constitutively active) and plated on different ECM proteins used as substrate (fibronectin, collagen IV, collagen I, and laminin) or poly-l-lysine as control. Morphological changes of the VSMC were detected by fluorescence confocal microscopy and total internal reflection fluorescence (TIRF) microscopy, and were independently verified using adhesion assays and Western blot analysis. Our results showed that the ECM has an important role in cell spreading, adhesion and morphology with a direct effect on modulating RhoA signaling. RhoA activity significantly affected the stress fibers and focal adhesions reorganization, but in a context imposed by the ECM. Thus, RhoA activity modulation in VSMC induced an increased activation of stress fibers and FA formation at 5h, while a significant inhibition was recorded at 24h after plating on the different ECM. Our findings provide biophysical evidence that ECM modulates VSMC response to mechanical stimuli inducing intracellular biochemical signaling involved in cellular adaptation to the local microenvironment.


Subject(s)
Extracellular Matrix Proteins/pharmacology , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Signal Transduction , rhoA GTP-Binding Protein/metabolism , Actins/metabolism , Animals , Arterioles/cytology , Focal Adhesions/metabolism , Microscopy, Fluorescence , Muscle, Smooth, Vascular/cytology , Rats , Stress, Mechanical
SELECTION OF CITATIONS
SEARCH DETAIL
...