Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 26(13)2021 Jun 22.
Article in English | MEDLINE | ID: mdl-34206625

ABSTRACT

Pyrethroids are among the insecticidal compounds indicated by the World Health Organization for mitigation of vector-borne diseases. Active deltamethrin (with chiral configuration α-S,1-R-cis) is one of the most effective pyrethroids characterized by low toxicity to humans, and it is currently tested as active ingredient for insecticidal paints. Nevertheless, several degradation processes can occur and affect the insecticidal efficacy in the complex paint matrix. In the present study, a detailed NMR analysis of deltamethrin stability has been carried out under stress conditions, mimicking a water-based insecticidal paint environment. Two novel by-products, having a diastereomeric relationship, were identified and their structure was elucidated by combining NMR, HPLC, GC-MS, and ESI-MS analyses. These compounds are the result from a nucleophilic addition involving deltamethrin and one of its major degradation products, 3-phenoxybenzaldehyde. Given the known toxicity of the aldehyde, this reaction could represent a way to reduce its concentration into the matrix. On the other hand, the toxicology of these compounds towards humans should be addressed, as their presence may adversely affect the performance of deltamethrin-containing products.

2.
Magn Reson Chem ; 59(2): 172-186, 2021 02.
Article in English | MEDLINE | ID: mdl-32929750

ABSTRACT

Detection and quantification of low molecular weight components in polymeric samples via nuclear magnetic resonance (NMR) spectroscopy can be difficult due to overlapping signal caused by line broadening characteristics of polymers. A way of overcoming this problem could be the exploitation of the difference in relaxation between small molecules and macromolecular species, such as the application of a T2 filter by using the Carr-Purcell-Meiboom-Gill (CPMG) spin-echo pulse sequence. This technique, largely exploited in metabolomics studies, is applied here to material sciences. A Design of Experiments approach was used for evaluating the effect of different acquisition parameters (relaxation delay, echo time and number of cycles) and sample-related ones (concentration and polymer molecular weight) on selected responses, with a particular interest in performing a reliable quantitative analysis. Polymeric samples containing small molecules were analysed by NMR with and without the application of the filter, and analysis of variance was used to identify the most influential parameters. Results indicated that increasing the polymer concentration, hence sample viscosity, further attenuates polymer signals in CPMG experiments because the T2 of those signals tends to decrease with increasing viscosity. The signal-to-noise ratio measured for small molecules can undergo a minimum loss when specific parameters are chosen in relation to the polymer molecular weight. Furthermore, the difference in dynamics between aliphatic and aromatic nuclei, as well as between mobile and stiff polymers, translates into different results in terms of polymer signal reduction, suggesting that the relaxation filter can also be used for obtaining information on the polymer structure.

SELECTION OF CITATIONS
SEARCH DETAIL
...