Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 86(3): 034701, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25832252

ABSTRACT

Electromagnets that can produce strong rotating magnetic fields at kHz frequencies are potentially very useful to exert rotating force on magnetic nanoparticles as small as few nanometers in size. In this article, the construction of a pulsed high-voltage rotating electromagnet is demonstrated based on a nested Helmholtz coil design. The energy for the coils is provided by two high-voltage discharge capacitors. The triggered spark gaps used in the experiments show sufficient accuracy to achieve the high frequency rotating magnetic field. The measured strength of the rotating magnetic field is 200 mT. This magnetic field is scalable by increasing the number of turns on the coils, by reducing the dimensions of the coils and by increasing the discharge current/voltage of the capacitors.

2.
J Phys Chem B ; 118(40): 11715-22, 2014 Oct 09.
Article in English | MEDLINE | ID: mdl-25110807

ABSTRACT

Fast drug delivery is very important to utilize drug molecules that are short-lived under physiological conditions. Techniques that can release model molecules under physiological conditions could play an important role to discover the pharmacokinetics of short-lived substances in the body. Here an experimental method is developed for the fast release of the liposomes' payload without a significant increase in (local) temperatures. This goal is achieved by using short magnetic pulses to disrupt the lipid bilayer of liposomes loaded with magnetic nanoparticles. The drug release has been tested by two independent assays. The first assay relies on the AC impedance measurements of MgSO4 released from the magnetic liposomes. The second standard release assay is based on the increase of the fluorescence signal from 5(6)-carboxyfluorescein dye when the dye is released from the magneto liposomes. The efficiency of drug release ranges from a few percent to up to 40% in the case of the MgSO4. The experiments also indicate that the magnetic nanoparticles generate ultrasound, which is assumed to have a role in the release of the model drugs from the magneto liposomes.


Subject(s)
Drug Delivery Systems , Liposomes/chemistry , Magnetite Nanoparticles/chemistry , Drug Liberation , Fluoresceins/administration & dosage , Fluorescent Dyes/administration & dosage , Magnesium Sulfate/administration & dosage , Magnetic Fields , Sound , Ultrasonics
3.
Int J Pharm ; 458(1): 169-80, 2013 Dec 15.
Article in English | MEDLINE | ID: mdl-24091153

ABSTRACT

A multifunctional tumor-targeting delivery system was developed and evaluated for an efficient treatment of drug-resistant ovarian cancer by combinatorial therapeutic modality based on chemotherapy and mild hyperthermia. The engineered iron oxide nanoparticle (IONPs)-based nanocarrier served as an efficient delivery vehicle for doxorubicin and provided the ability to heat cancer cells remotely upon exposure to an alternating magnetic field (AMF). The nanocarrier was additionally modified with polyethylene glycol and LHRH peptide to improve its biocompatibility and ability to target tumor cells. The synthesized delivery system has an average size of 97.1 nm and a zeta potential close to zero, both parameters favorable for increased stability in biological media and decreased elimination by the immune system. The nanocarrier demonstrated faster drug release in acidic conditions that mimic the tumor environment. It was also observed that the LHRH targeted delivery system could effectively enter drug resistant ovarian cancer cells, and the fate of doxorubicin was tracked with fluorescence microscope. Mild hyperthermia (40°C) generated by IONPs under exposure to AMF synergistically increased the cytotoxicity of doxorubicin delivered by the developed nanocarrier to cancer cells. Thus, the developed IONPs-based delivery system has high potential in the effective treatment of ovarian cancer by combinatorial approach.


Subject(s)
Antineoplastic Agents/administration & dosage , Drug Carriers/administration & dosage , Fever/drug therapy , Magnetite Nanoparticles/administration & dosage , Ovarian Neoplasms/drug therapy , Antineoplastic Agents/chemistry , Cell Line, Tumor , Drug Carriers/chemistry , Drug Delivery Systems/methods , Female , Ferric Compounds/administration & dosage , Ferric Compounds/chemistry , Humans , Magnetics , Magnetite Nanoparticles/chemistry , Nanomedicine/methods , Particle Size , Polyethylene Glycols/administration & dosage , Polyethylene Glycols/chemistry
4.
J Phys Condens Matter ; 25(32): 325302, 2013 Aug 14.
Article in English | MEDLINE | ID: mdl-23846610

ABSTRACT

The Faraday rotation in metallic nanoparticles is considered based on a quantum model for the dielectric function ϵ(ω) in the presence of a DC magnetic field B. We focus on effects in ϵ(ω) due to interband transitions (IBTs), which are important in the blue and ultraviolet for noble metals used in plasmonics. The dielectric function is found using the perturbation of the electron density matrix due to the optical field of the incident electromagnetic radiation. The calculation is applied to transitions between two bands (d and p, for example) separated by a gap, as one finds in gold at the L-point of the Fermi surface. The result of the DC magnetic field is a shift in the effective optical frequency causing IBTs by ±µBB/h, where opposite signs are associated with left/right circular polarizations. The Faraday rotation for a dilute solution of 17 nm diameter gold nanoparticles is measured and compared with both the IBT theory and a simpler Drude model for the bound electron response. Effects of the plasmon resonance mode on Faraday rotation in nanoparticles are also discussed.

5.
Beilstein J Nanotechnol ; 3: 444-55, 2012.
Article in English | MEDLINE | ID: mdl-23016149

ABSTRACT

The targeted delivery of therapeutics to the tumor site is highly desirable in cancer treatment, because it is capable of minimizing collateral damage. Herein, we report the synthesis of a nanoplatform, which is composed of a 15 ± 1 nm diameter core/shell Fe/Fe(3)O(4) magnetic nanoparticles (MNPs) and the topoisomerase I blocker SN38 bound to the surface of the MNPs via a carboxylesterase cleavable linker. This nanoplatform demonstrated high heating ability (SAR = 522 ± 40 W/g) in an AC-magnetic field. For the purpose of targeted delivery, this nanoplatform was loaded into tumor-homing double-stable RAW264.7 cells (mouse monocyte/macrophage-like cells (Mo/Ma)), which have been engineered to express intracellular carboxylesterase (InCE) upon addition of doxycycline by a Tet-On Advanced system. The nanoplatform was taken up efficiently by these tumor-homing cells. They showed low toxicity even at high nanoplatform concentration. SN38 was released successfully by switching on the Tet-On Advanced system. We have demonstrated that this nanoplatform can be potentially used for thermochemotherapy. We will be able to achieve the following goals: (1) Specifically deliver the SN38 prodrug and magnetic nanoparticles to the cancer site as the payload of tumor-homing double-stable RAW264.7 cells; (2) Release of chemotherapeutic SN38 at the cancer site by means of the self-containing Tet-On Advanced system; (3) Provide localized magnetic hyperthermia to enhance the cancer treatment, both by killing cancer cells through magnetic heating and by activating the immune system.

6.
J Chem Phys ; 135(22): 224502, 2011 Dec 14.
Article in English | MEDLINE | ID: mdl-22168698

ABSTRACT

Understanding plasmonic enhancement of nanoscale magnetic materials is important to evaluate their potential for application. In this study, the Faraday rotation (FR) enhancement of gold coated Fe(2)O(3) nanoparticles (NP) is investigated experimentally and theoretically. The experiment shows that the Faraday rotation of a Fe(2)O(3) NP solution changes from approximately 3 rad/Tm to 10 rad/Tm as 5 nm gold shell is coated on a 9.7 nm Fe(2)O(3) core at 632 nm. The results also show how the volume fraction normalized Faraday rotation varies with the gold shell thickness. From the comparison of experiment and calculated Faraday rotation based on the Maxwell-Garnett theory, it is concluded that the enhancement and shell dependence of Faraday rotation of Fe(2)O(3) NPs is a result of the shifting plasmon resonance of the composite NP. In addition, the clustering of the NPs induces a different phase lag on the Faraday signal, which suggests that the collective response of the magnetic NP aggregates needs to be considered even in solution. From the Faraday phase lag, the estimated time of the full alignment of the magnetic spins of bare (cluster size 160 nm) and gold coated NPs (cluster size 90 nm) are found to be 0.65 and 0.17 µs. The calculation includes a simple theoretical approach based on the Bruggeman theory to account for the aggregation and its effect on the Faraday rotation. The Bruggeman model provides a qualitatively better agreement with the experimentally observed Faraday rotation and points out the importance of making a connection between component properties and the average "effective" optical behavior of the Faraday medium containing magnetic nanoparticles.

7.
BMC Cancer ; 10: 119, 2010 Mar 30.
Article in English | MEDLINE | ID: mdl-20350328

ABSTRACT

BACKGROUND: There is renewed interest in magnetic hyperthermia as a treatment modality for cancer, especially when it is combined with other more traditional therapeutic approaches, such as the co-delivery of anticancer drugs or photodynamic therapy. METHODS: The influence of bimagnetic nanoparticles (MNPs) combined with short external alternating magnetic field (AMF) exposure on the growth of subcutaneous mouse melanomas (B16-F10) was evaluated. Bimagnetic Fe/Fe3O4 core/shell nanoparticles were designed for cancer targeting after intratumoral or intravenous administration. Their inorganic center was protected against rapid biocorrosion by organic dopamine-oligoethylene glycol ligands. TCPP (4-tetracarboxyphenyl porphyrin) units were attached to the dopamine-oligoethylene glycol ligands. RESULTS: The magnetic hyperthermia results obtained after intratumoral injection indicated that micromolar concentrations of iron given within the modified core-shell Fe/Fe3O4 nanoparticles caused a significant anti-tumor effect on murine B16-F10 melanoma with three short 10-minute AMF exposures. We also observed a decrease in tumor size after intravenous administration of the MNPs followed by three consecutive days of AMF exposure 24 hrs after the MNPs injection. CONCLUSIONS: These results indicate that intratumoral administration of surface modified MNPs can attenuate mouse melanoma after AMF exposure. Moreover, we have found that after intravenous administration of micromolar concentrations, these MNPs are capable of causing an anti-tumor effect in a mouse melanoma model after only a short AMF exposure time. This is a clear improvement to state of the art.


Subject(s)
Ferrosoferric Oxide/administration & dosage , Hyperthermia, Induced/methods , Iron/administration & dosage , Magnetic Field Therapy/methods , Melanoma, Experimental/therapy , Metal Nanoparticles/administration & dosage , Animals , Apoptosis/physiology , Female , Ferrosoferric Oxide/chemistry , Iron/analysis , Melanoma, Experimental/pathology , Metal Nanoparticles/chemistry , Mice , Mice, Inbred C57BL , Porphyrins/administration & dosage , Porphyrins/chemistry
8.
ACS Nano ; 3(2): 462-6, 2009 Feb 24.
Article in English | MEDLINE | ID: mdl-19236086

ABSTRACT

The octameric porin MspA from Mycobacterium smegmatis is sufficiently stable to form a nonmembrane-supported stand-alone porin on mica surfaces. About 98% of all MspA octamers were found to stand upright on mica, with their periplasmic loop regions bound to the hydrophilic mica surface. Both, small (d = 3.7 nm) and large (d = 17 nm) gold nanoparticles bind to MspA, however, in different positions: small gold nanoparticles bind within the MspA pore, whereas the large gold nanoparticles bind to the upper region of MspA. These experiments demonstrate that gold nanoparticles can be positioned at different, well-defined distances from the underlying surface using the MspA pore as a template. These findings represent a significant step toward the use of electrically insulating stable proteins in combination with metal nanoparticles in nanodevices.


Subject(s)
Aluminum Silicates/chemistry , Gold/metabolism , Metal Nanoparticles/chemistry , Mycobacterium smegmatis , Porins/metabolism , Buffers , Gold/chemistry , Hydrophobic and Hydrophilic Interactions , Methanol/chemistry , Models, Molecular , Nanotechnology , Porins/chemistry , Protein Binding , Protein Conformation , Protein Stability , Surface Properties , Water/chemistry
9.
Nano Lett ; 8(4): 1229-36, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18318505

ABSTRACT

In this study, the interactions of two gold nanoparticles of different sizes (average diameters of 3.7 +/- 2.6 and 17 +/- 3 nm) with octameric mycobacterial porin A from Mycobacterium smegmatis (MspA) and a mutant of MspA featuring a cysteine mutation in position 126 (Q126C) are investigated. From the observation of enhanced photoluminescence quenching, it is inferred that the presence of eight cysteines in the MspA Q126C mutant significantly enhances the binding of selected small gold nanoparticles within the inner pore of MspA. The large gold nanoparticle/porin complex shows photoluminescence enhancement, which is expected since the larger nanoparticles cannot dock within the homopore of MspA due to size exclusion. In addition to the fluorescence experiments, observation of energy transfer from the small gold nanoparticles to the MspA shows the close proximity of the small gold nanoparticles with the porin. Interestingly, the energy transfer of the large nanoparticle/MspA complex is completely missing. From high-performance liquid chromatography data, the estimated binding constants for small Au@MspA, large Au@MspA, small Au@MspAcys, and large Au@MspAcys are 1.3 x 10 (9), 2.22 x 10 (10), > 10 (12) (irreversible), and 1.7 x 10 (10), respectively.


Subject(s)
Cysteine/genetics , Gold/chemistry , Metal Nanoparticles , Mutation , Porins/chemistry , Chromatography, High Pressure Liquid , Microscopy, Electron, Transmission , Neutron Activation Analysis , Spectrometry, Fluorescence
SELECTION OF CITATIONS
SEARCH DETAIL
...