Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 14(26): 18171-18180, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38854827

ABSTRACT

Silica-coated iron (Fe@SiO2) particles have attracted considerable interest as a potential powder core material due to their distinctive advantages, including higher magnetic saturation and enhanced electrical resistance. In this study, the submicron-sized core-shell Fe@SiO2 particles were successfully synthesized in a single step via an aerosol process using a spray pyrolysis method assisted by a swirler connector for the first time. Changing the reducing agent concentration (supplied H2) and tuning the number of core (Fe) particles were investigated to achieve the desired Fe@SiO2 particles. The results indicated that an excessive number of cores led to the appearance of FeO crystals due to insufficient reduction. Conversely, an insufficient number of cores resulted in a thicker SiO2 shell, which hindered the penetration of the supplied H2 gas. Furthermore, the produced Fe@SiO2 particles exhibited soft-ferromagnetic characteristics with an excellent magnetic saturation value of 2.04 T, which is close to the standard theoretical value of 2.15 T. This work contributes new insights into the production of core-shell Fe@SiO2 particles, expanding their applicability to advanced soft-magnetic materials.

2.
ACS Omega ; 9(14): 16665-16675, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38617625

ABSTRACT

Kappaphycopsis cottonii, a prominent macroalgae species cultivated in an Indonesian marine culture, yields significant biomass, a portion of which is often rejected by industry. This study explores the potential valorization of rejected K. cottonii biomass through slow pyrolysis for bio-oil and biochar production, presenting an alternative and sustainable utilization pathway. The study utilizes a batch reactor setup for the thermal decomposition of K. cottonii, conducted at temperatures between 400 and 600 °C and varying time intervals between 10 and 50 min. The study elucidates the temperature-dependent behavior of K. cottonii during slow pyrolysis, emphasizing its impact on product distributions. The results suggest that there is a rise in bio-oil production when the pyrolysis temperature is raised from 400 to 500 °C. This uptick is believed to be due to improved dehydration and greater thermal breakdown of the algal biomass. Conversely, at 600 °C, bio-oil yield diminishes, indicating secondary cracking of liquid products and the generation of noncondensable gases. Chemical analysis of bio-oils reveals substantial quantities of furan derivatives, aliphatic hydrocarbons, and carboxylic acids. Biochar exhibits calorific values within the range of 17.52-19.46 MJ kg-1, and slow pyrolysis enhances its specific surface area, accompanied by the observation of carbon nanostructures. The study not only investigates product yields but also deduces plausible reaction routes for the generation of certain substances throughout the process of slow pyrolysis. Overall, the slow pyrolysis of rejected K. cottonii presents an opportunity to obtain valuable chemicals and biochar. These products hold promise for applications such as biofuels and diverse uses in wastewater treatment, catalysis, and adsorption, contributing to both environmental mitigation and the circular economy.

3.
RSC Adv ; 11(48): 30305-30314, 2021 Sep 06.
Article in English | MEDLINE | ID: mdl-35480242

ABSTRACT

The purpose of this study was to demonstrate the preparation of spherical submicron YAG:Ce particles with controllable particle outer diameters and crystallite sizes and their photoluminescence (PL) properties, which were produced using a flame-assisted spray-pyrolysis method followed by the annealing process. The correlation of particle outer diameter, crystallite size, and PL performance of the prepared particles was also investigated. Experimental results showed that the increases in the particle outer diameters have an impact on the obtainment of higher PL performance. Large particle outer diameters permitted the crystallites to grow more, whereas this is in contrast to the condition for small particle outer diameter having limitations in crystallite growth. This study also found that too large outer diameter (>557 nm) was not effective since crystallites cannot grow anymore and it permits possible scattering problems. This study provides significant information for optimizing synthesis parameters for controlling particle outer diameters and crystallite sizes, which could be relevant to other functional properties, especially for lens, solar cell, and LED applications.

4.
Nanoscale ; 6(12): 6487-91, 2014 Jun 21.
Article in English | MEDLINE | ID: mdl-24834445

ABSTRACT

Well-dispersed spherical core-shell α''-Fe16N2/SiO2 ferro-magnetic nanoparticles were successfully synthesized from core-shell α-Fe/SiO2 nanoparticles. Introduction of oxidation prior to the nitridation process gives 90% of α''-Fe16N2 phase contained in the core while no phase change is observed without oxidation. Saturation magnetization and coercivity are 148 emu g(-1) and 1.82 kOe, respectively.

SELECTION OF CITATIONS
SEARCH DETAIL
...